16 research outputs found

    The OpenModelica integrated environment for modeling, simulation, and model-based development

    Get PDF
    OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simulation, optimization, model-based analysis and development environment. Moreover, the OpenModelica environment provides a number of facilities such as debugging; optimization; visualization and 3D animation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab; efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica- UML integration; requirement verification; and generation of parallel code for multi-core architectures. The environment is based on the equation-based object-oriented Modelica language and currently uses the MetaModelica extended version of Modelica for its model compiler implementation. This overview paper gives an up-to-date description of the capabilities of the system, short overviews of used open source symbolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons learned, and the main vision behind its development.Fil: Fritzson, Peter. Linköping University; SueciaFil: Pop, Adrian. Linköping University; SueciaFil: Abdelhak, Karim. Fachhochschule Bielefeld; AlemaniaFil: Asghar, Adeel. Linköping University; SueciaFil: Bachmann, Bernhard. Fachhochschule Bielefeld; AlemaniaFil: Braun, Willi. Fachhochschule Bielefeld; AlemaniaFil: Bouskela, Daniel. Electricité de France; FranciaFil: Braun, Robert. Linköping University; SueciaFil: Buffoni, Lena. Linköping University; SueciaFil: Casella, Francesco. Politecnico di Milano; ItaliaFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Franke, Rüdiger. Abb Group; AlemaniaFil: Fritzson, Dag. Linköping University; SueciaFil: Gebremedhin, Mahder. Linköping University; SueciaFil: Heuermann, Andreas. Linköping University; SueciaFil: Lie, Bernt. University of South-Eastern Norway; NoruegaFil: Mengist, Alachew. Linköping University; SueciaFil: Mikelsons, Lars. Linköping University; SueciaFil: Moudgalya, Kannan. Indian Institute Of Technology Bombay; IndiaFil: Ochel, Lennart. Linköping University; SueciaFil: Palanisamy, Arunkumar. Linköping University; SueciaFil: Ruge, Vitalij. Fachhochschule Bielefeld; AlemaniaFil: Schamai, Wladimir. Danfoss Power Solutions GmbH & Co; AlemaniaFil: Sjolund, Martin. Linköping University; SueciaFil: Thiele, Bernhard. Linköping University; SueciaFil: Tinnerholm, John. Linköping University; SueciaFil: Ostlund, Per. Linköping University; Sueci

    Extended Metamodelica Based Integrated Copiler Generator

    No full text
    OMCCp is a new generation (not yet released) of the OpenModelica Compiler-Compiler parser generator which contains an LALR parser generator implemented in the MetaModelica language with parsing tables generated by the tools Flex and GNU Bison. It also contains very good error handling and is integrated with the MetaModelica semantics specification language.   The main benefit with this master thesis project is the development of new version of OMCCp with complete support for an extended Modelica grammar for a complete OMCCp-based Modelica parser. The implemented parser has been tested and the results have been analyzed. This is a new enhanced generation OMCCp with improvements made from the previous version. This version support Modelica as well as the language extensions for MetaModelica, ParModelica, and optimization problem specification. Moreover, the generated parsers are about three times faster than those from the old OMCCp

    Extended Metamodelica Based Integrated Copiler Generator

    No full text
    OMCCp is a new generation (not yet released) of the OpenModelica Compiler-Compiler parser generator which contains an LALR parser generator implemented in the MetaModelica language with parsing tables generated by the tools Flex and GNU Bison. It also contains very good error handling and is integrated with the MetaModelica semantics specification language.   The main benefit with this master thesis project is the development of new version of OMCCp with complete support for an extended Modelica grammar for a complete OMCCp-based Modelica parser. The implemented parser has been tested and the results have been analyzed. This is a new enhanced generation OMCCp with improvements made from the previous version. This version support Modelica as well as the language extensions for MetaModelica, ParModelica, and optimization problem specification. Moreover, the generated parsers are about three times faster than those from the old OMCCp

    Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in PySimulator

    Get PDF
    The Modelica and FMI tool ecosystem is growing each year with new tools and methods becoming available. The open Modelica standard promises portability but it is important to ensure that a certain model behaves the same in different Modelica tools or in a different version of the same tool. It is also very important (for model evolution) to check that a new version of the same model produces comparable results. Finally, it is desirable to verify that a model exported in FMU form from a Modelica tool gives exactly the same results as the original model. This paper presents a framework for automatic regression testing as part of PySimulator which provides an efficient and concise way of testing if a model or a range of models behaves in the same way in several tools or versions of a tool by checking that the results produced are essentially identical. The FMI standard has been adopted by many tool vendors and is growing in popularity each year. This paper proposes a concept for building and simulating a system made from connected FMUs generated by different tools. The FMUs for Co-Simulation can be connected together using a GUI. The system model built graphically in this way can be saved for later use or simulated directly inside PySimulator. Active development is going on to support simulation of connected FMUs for Model Exchange

    Rod-Shaped Carbon Aerogel-Assisted CdS Nanocomposite for the Removal of Methylene Blue Dye and Colorless Phenol

    No full text
    A carbon aerogel (CA)-assisted CdS nanocomposite was prepared by hydrothermal process and was investigated as a photocatalyst towards the photodegradation of methylene blue (MB) dye and colorless phenol under visible light irradiation (VLI). CdS have attracted wide attention due to their relatively narrow band gap for the visible light effect and the suitably negative potential of the conduction band (CB) edge for the neutralization of H+ ions. The obtained characterization results suggest that the CA-assisted CdS nanocomposite has enhanced photophysical properties, a more surface area, and the desired morphology at the nm scale. Under optimization, CdS CA 8% shows superior catalytic activity for degradation compared with other samples. The photocatalytic activities of the as-synthesized samples were examined under VLI through the MB and phenol degradation. Compared with pure CA and CdS, the CA (8%)-assisted CdS nanoparticles (NPs) offer significantly enhanced photocatalytic efficiency for MB and phenol. The mechanism of photocatalytic reaction was examined by adding various scavengers, and the results revealed that the holes generated in CA (8%)-assisted CdS NPs have a crucial impact on the visible light photocatalytic process. The improved photocatalytic degradation was due to the strong interaction between the CA and CdS NPs

    The OpenModelica Integrated Environment for Modeling, Simulation, and Model-Based Development

    Get PDF
    OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simulation, optimization, model-based analysis and development environment. Moreover, the OpenModelica environment provides a number of facilities such as debugging; optimization; visualization and 3D animation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab; efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica-UML integration; requirement verification; and generation of parallel code for multi-core architectures. The environment is based on the equation-based object-oriented Modelica language and currently uses the MetaModelica extended version of Modelica for its model compiler implementation. This overview paper gives an up-to-date description of the capabilities of the system, short overviews of used open source symbolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons learned, and the main vision behind its development.Funding agencies: Vinnova in the ITEA OPENPROD projectVinnova; Vinnova in the ITEA MODRIO projectVinnova; Vinnova in the ITEA OPENCPS projectVinnova; Vinnova in the ITEA EMPHYSIS projectVinnova; Vinnova in the ITEA EMBRACE projectVinnova; Vinnova RTISIM projectVinnova; Vin</p
    corecore