
Automatic Regression Testing of Simulation Models and

Concept for Simulation of Connected FMUs in PySimulator

Adeel Asghar1 Andreas Pfeiffer2 Arunkumar Palanisamy1 Alachew Mengist1
Martin Sjölund1 Adrian Pop1 Peter Fritzson1

1PELAB – Programming Environment Lab, Dept. Computer Science, Linköping University, Sweden,
{adeel.asghar,arunkumar.palanisamy,alachew.mengist,
martin.sjolund,adrian.pop,peter.fritzson}@liu.se

2DLR Institute of System Dynamics and Control, 82234 Weßling, Germany, andreas.pfeiffer@dlr.de

Abstract

The Modelica and FMI tool ecosystem is growing each
year with new tools and methods becoming available.
The open Modelica standard promises portability but it
is important to ensure that a certain model behaves the
same in different Modelica tools or in a different
version of the same tool. It is also very important (for
model evolution) to check that a new version of the
same model produces comparable results. Finally, it is
desirable to verify that a model exported in FMU form
from a Modelica tool gives exactly the same results as
the original model. This paper presents a framework
for automatic regression testing as part of PySimulator
which provides an efficient and concise way of testing
if a model or a range of models behaves in the same
way in several tools or versions of a tool by checking
that the results produced are essentially identical.

The FMI standard has been adopted by many tool
vendors and is growing in popularity each year. This
paper proposes a concept for building and simulating a
system made from connected FMUs generated by
different tools. The FMUs for Co-Simulation can be
connected together using a GUI. The system model
built graphically in this way can be saved for later use
or simulated directly inside PySimulator. Active
development is going on to support simulation of
connected FMUs for Model Exchange.

Keywords: PySimulator, Regression Testing,

Connected FMUs, Parallel Simulation, Wolfram

Simulator plugin

1 Introduction

Due to the success of Modelica and FMI many
different tools support these open standards (e.g., see
the table of Modelica tools on www.modelica.org/tools
and FMI tools on www.fmi-standard.org/tools). To
ensure a high quality of models, tools, and their
interoperability, it will become increasingly important
to have tools available for automatic testing of models
with different Modelica / FMI tools. As a first step, the
Modelica Association has financed the development of

a CSV comparison tool (ITI, 2013). Currently a tool to
test the examples of the Modelica Standard Library is
being developed within the Modelica Association
(Otter, 2015).

Some Modelica tool vendors have their own features
to test models, but only by using their own tool (e.g.
OpenModelica or Dymola). What is currently missing
is a platform to perform regression testing among
different tools. The open source environment
PySimulator (Pfeiffer et al, 2012), see also
www.pysimulator.org, has the potential to contribute to
such a platform because it already supports several
different simulator tools and result file formats.

PySimulator is an environment implemented in
Python that provides a graphical user interface for
simulating different model types (currently Functional
Mockup Units, Modelica models, and SimulationX
models), plotting result variables and applying
simulation result analysis tools. The modularity
concept of PySimulator enables easy development of
further plugins for both simulation and analysis.

In Section 2 of the paper we have extended the list
of simulator plugins for PySimulator by implementing
a plugin for Wolfram’s SystemModeler. In Section 3
we present the analysis plugin, testing, for PySimulator
that enables different features necessary to provide
convenient regression testing with good performance.
In Section 4 we introduce functionalities like automatic
simulation of models given by a list in a text file as
well as parallel simulation and regression analysis to
considerably speed up the computation time on multi-
core machines.

As PySimulator is aimed at playing the role of an
integration platform, the support of connected FMUs is
a further topic of this paper. It is an important feature
to run simulations of connected FMUs from different
suppliers since the suppliers can protect their
knowledge within the FMU and a whole system
consisting of several components (represented by
FMUs) can be simulated. In Section 5 a concept is
introduced on how to describe and simulate connected
FMUs within PySimulator.

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

671

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/31019446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Simulator Plugin for Wolfram

SystemModeler

PySimulator supports simulation of models in FMU
form or using different Modelica tools via extension
plugins. From previous work simulator plugins for
tools such as Dymola, SimulationX, and
OpenModelica (Ganeson et al, 2012) are available.
This section presents a new simulator plugin developed
for Wolfram SystemModeler.

Using the existing plugin interface for simulator
plugins in PySimulator a new simulator plugin has
been implemented: the Wolfram plugin. It enables
PySimulator to load and numerically simulate
Modelica models using Wolfram SystemModeler
(Wolfram SystemModeler, 2015).

The Wolfram plugin is integrated into PySimulator
via MathLink (Wolfram SystemModeler, 2015) and
Pythonica (Edwards, 2012) which connects to
Mathematica (Wolfram Mathematica, 2015) and
SystemModeler. We used the Wolfram SystemModeler
API to support loading a Modelica model, simulating
it, and reading the simulation setting file (.sim) which
is an XML file to build the variable tree in the
variables browser of PySimulator. The overall
communication setup with SystemModeler is given in
Figure 1.

Figure 1. Communication setup with SystemModeler.

All the simulator plugins of PySimulator are controlled
by the same Integrator Control GUI. The Wolfram
SystemModeler simulator supports five different
numerical integration methods (DASSL, CVODES,

Euler, RungeKutta, and Heun), all the simulation
menu options are supported (error tolerance, fixed step
size, etc.).

The start and stop time for the integration algorithm
can be changed and one of the integration algorithms
can be selected. Depending on the integration
algorithms the user can change the error tolerance or
the fixed step size before running the simulation.

It is also possible to simulate the list of models using
the Wolfram plugin, see Figure 9 in Section 4. The
existing PySimulator interface automatically includes
the new plugin to the simulators list for simulating a
list of models, see also Section 4.1.

3 Regression Testing – Design and

Appearance

In this paper, regression testing means the automated
simulation of models and the automated comparison of
the simulation results with some kind of baseline
results (normally also automatically simulated). An
automatically generated summary report gives the
overview of the whole test results.

Possible applications of such test procedures are the
following (Pfeiffer et al, 2013):

• Different versions of a model exist and they are
compared to the original version of the model
within one tool (model evolution and validation).

• A Modelica model is simulated by different tools
and the results are compared to a reference solution
(tool validation).

• A Modelica model and its corresponding FMU
exported by a tool are compared to each other
(FMU export model validation).

• An FMU is exported by different tools for the same
model. The results of the FMUs are compared to
each other (FMU export tool validation).

The applications are described for one model but they
can also be applied to a list of models, e.g., all example
models of a Modelica library.

Several parts are necessary to realize the mentioned
features within PySimulator:

• Enable the automatic simulation of a given list of
models by a defined list of simulator plugins, see
Section 4.1.

• Compare the variables of simulation result files
with different simulation result formats like
Dymola’s mat-format, CSV-format, MTSF-format
(Pfeiffer, Bausch-Gall et al, 2012).

• Compute a numerical measure for the deviation of
two time-dependent signals.

• Enable automatic walk through result file
directories and find result files that can be
compared.

• Generate HTML-reports that document the
outcome of comparing the variables in the result
files.

3.1 Comparing Variables in Result Files

The concept of how to compare the results of model
simulations is mainly based on the comparison of two
result files. In PySimulator several plugins for different
simulation result file formats have been created by the
previous work of several contributors1, see Figure 2.

1 A. Pfeiffer, M. Otter (DLR), I. Bausch-Gall (Bausch-Gall GmbH),
T. Beutlich (ITI GmbH)

PySimulator
MathLink

via

Pythonica

Mathematica

SystemModeler

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

672 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

Figure 2. Different result file formats.

These plugins are used to read (and partly write) the
simulation result files after the simulation run.
Internally in PySimulator the data of the result files is
structured according to time series. The concept of
time series is in the style of the MTSF format, see
(Pfeiffer, Bausch-Gall et al, 2012) for details. All
variables based on the same time grid are grouped into
a time series. Typically, three types of time series can
be found in result files:

• Parameters and constants (a special time series
without a time grid),

• Discrete variables (time grid is according to
events),

• Continuous variables (time grid is given by the
output points of the integrator and by events).

In the current implementation the basic algorithm to
compute the deviation between two time dependent
signals / variables �(�) and �(�) relies on the following
measure:

 �(�,�) ≔
�(� − �)

1 + �(�) + �(�)

with �(�) ≔
1�� − �0 � |�(�)| ��.��

�0

The deviation measure � can be understood as a
combination of the absolute and relative integral error
between the two signals � and � on the time
interval [�0, ��]. Due to adding 1 to �(�) + �(�), the
denominator is always greater than zero. The
inequalities 0 ≤ � ≤ 1 hold because of the triangle
inequality �(� − �) ≤ �(�) + �(�). For constant
signals �, � (like parameters or constants of models)
we have �(�,�) =

|� − �|

1 + |�| + |�|
.

E.g. for � = 2 and � = 2.01 we get � ≈ 2e-3 which is
in the order of magnitude of the relative error
0.01 2 = 5⁄ e-3.

To get time dependent functions for the signals of a
simulation result file the result points are linearly
interpolated. The integrals of piecewise linear
functions can easily be computed by an analytic
approach – also including discontinuities introduced by
events during numerical integration. The main parts of
the algorithm and of the computation time is concerned
with the (possibly different) time grids of � and �.

Therefore the time series concept fits very well into the
algorithm. For each time series only one time grid is
defined and the corresponding computational effort for
the grid is only done once. On the other hand the time
series concept enables reduction of the simulation
result file size because only result points are saved
when possible changes in the variable can be expected.
Because there is no best way to compare signals, the
implemented algorithm can easily be exchanged by
another (user-defined) algorithm – if necessary.

It is clear that linear interpolation of the result points
introduces an error between the linear interpolation and
the numerical solution normally available with (much)
higher precision. The error of linear interpolation is �(∆�2) with the time grid width ∆�, whereas for a
numerical integration method e.g. of order 4 the global
error between the analytical solution and the numerical
approximation is �(ℎ4) for the time step size ℎ. This
means that it does not make sense to compare results
accurately computed by high order integration
algorithms and finally to compare them on different
(wide spaced) time grids with linear interpolation
between. Consequently, it is highly recommended to
generate equal time grids for the result files to be
compared using the dense output functionality by novel
integration algorithms.

The concept to define a measure has the advantage
that really a number is computed for the deviation
between two signals. The alternative approach to only
check, if two signals are identical within a given error
tolerance gives a true / false information but does not
specify how far the signals are away to be within the
tolerance. Of course, the deviation number can also be
used to check if it is below the error tolerance.

For the user of PySimulator and the testing plugin a
GUI has been developed to define regression tests, see
Figure 3.

Figure 3. Compare result files GUI.

In the baseline result directory there are result files that
are used as a reference to be compared to the result
files in the given list of result directories. Each
directory is searched for a result file with the same
name as the baseline result file (without file suffixes).
If there are files with the same names except the file
suffix, then these files will be compared using the

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

673

algorithm described above. Before starting the analysis,
the user has to specify an error tolerance up to what
deviations between signals are acceptable. The
regression report and all corresponding files are
generated into the report directory to be defined by the
user.

3.2 HTML Report for Regression Testing

The result of the regression testing is a generated
HTML report which presents the results of the analysis
in a compact and concise way. We have been iterating
over the appearance of the HTML report in order to
make it more clear and compact while providing
enough information to the user about the regression
analysis.

The appearance of the current version of the HTML
report is given in Figure 4. It includes a table with the
given models for simulation and the results obtained by
running the given tools. The top left corner gives
general information about the regression analysis such
as tolerance, used disk space, how many files and
signals were compared, generation time, etc.

The legend which gives the meaning of the colors is
given below the table with the results and linked from
above so that more useful information is displayed
close to the top.

The table gives information about the regression
testing including: how many comparisons passed or
failed, the largest difference between the signals, and
the total number of signals in the reference file and in
the file generated via simulation. An overview column
called “Status” is also present to quickly spot the
problematic tests.

Figure 5. HTML view with all the signals that differ.

Figure 4. The HTML report for regression analysis.

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

674 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

The columns in the right part of the report table show
as a link how many signals differ with respect to the
given tolerance. For example, there are 14 variables for
the Rectifier FMU (FMI 2.0) that differ from the
baseline simulation by Dymola. One can click on that
number and another HTML page will be presented
with an overview of the differences (Figure 5). On this
page one can see a table containing all the signals that
differ, sorted either by the variable name or by the
error between signals. To switch between the sorted
pages, one can click on the column headers of the table
namely “Name” and “Detected Error” to navigate to
the respective sorted page.

In this view the user can click on the variable names
and a new interactive page is displayed with more
information about the difference in the signals.

Figure 6. Interactive HTML view with the difference
between signals.

In the interactive signal difference HTML view (Figure
6) the user can zoom in and see the actual difference
between the selected variables.

3.3 Speed-up of Regression Testing

For many models or models with long simulation times
and / or large result files, the task to run the whole
regression testing analysis may take a long time. To
improve the performance two kinds of parallelization
techniques are applied:

• Simulate different models in parallel,

• Compare different result files in parallel.
The simulation of different models is presented in
Section 4.1 and the benefits of parallelization in
Section 4.2. The comparison of different result files in
parallel and the speed-up achieved versus serial
comparison is given in Section 4.3.

4 Performance of Regression Testing

In this section we detail the functionality available to
simulate models and to perform the regression
analysis. The performance improvements gained when
parallelization is applied are also presented.

4.1 Automatic Simulation in Batch Mode

In the initial design (Pfeiffer et al, 2012) of simulator
plugins in PySimulator the main interface to run a
numerical integration of a model was to click and edit
through the Integrator Control GUI. This is convenient
when experimenting with a few models and the
according result files. However, if we want to simulate
several models to generate result files (as needed for
regression testing), the original procedure will get
tedious and error-prone.

For this case we introduced a text file based
interface for PySimulator to specify the simulation
parameters of a list of models. The format of the text
file is rather simple. Currently, data for nine columns
has to be inserted for each model to be simulated.
Comment lines beginning with # can also be put in the
file. The user has to specify:

• The file name (possibly with full path name) of the
model or the library,

• The unique model name inside the library,

• An optional name of a sub-directory, where the
result file has to be saved,

• The start and stop time of the integration,

• The error tolerance or the fixed step size
(depending on the default integration algorithm),

• The number of output intervals for the result file,

• True or false, if result points at events shall be
included in the result file.

An example how a simulation setup file looks like is
given in Figure 7.

The setup file can easily be generated by some other
tools. A prototype is implemented in a scripting
function in Dymola to generate the setup file for all
models of a Modelica library with an “experiment”
annotation.

The setup file can be loaded using the PySimulator
GUI interface. An example of how to start the GUI and
load the setup file is given in Figure 8.

Setup file for simulation of several models by PySimulator
Columns to be filled:
modelFile modelName subDir tStart tStop tol stepSize nIntervals includeEvents
List of models to be simulated:
"D:/BoucingBall.mo" BouncingBall "" 0.0 2.0 1e-6 10 500 true
"D:/Rectifier.mo" Rectifier "" 0.0 0.1 1e-6 10 500 true
"D:/Rectifier_10.fmu" Rectifier "FMU1.0" 0.0 0.1 1e-6 10 500 true
"D:/Rectifier 20.fmu" Rectifier "FMU2.0" 0.0 0.1 1e-6 10 500 true

Figure 7. Content of the simulation setup file Setup.txt.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

675

Figure 8. Starting the simulation list of models from GUI.

Figure 9. GUI to load a setup file and select the simulator
tools from the list.

After selecting “Simulate List of Models…” from the
menu, the GUI interface pops up as shown in Figure 9.
After loading the setup file the user can select several
simulator plugins that shall run the models specified in
the setup file. The simulator plugins are able to
recognize if they can simulate all model types given in
the setup file. Models that cannot be processed are just
ignored. Currently, all simulator plugins for Modelica
models ignore FMUs and the FMU Simulator ignores
Modelica models. The parallel simulation of the
models to speed up the whole simulation process is
explained in the following section.

4.2 Parallel Simulation

The parallel simulation approach allows the user to
simulate models in parallel in different processes, using
as many cores as the machine has available, resulting
in improved performance. Each model in the list is
simulated in a separate directory in order to avoid
conflicts that would occur if models use the same file
names. Generating the files with the same name can
occur due to simulating the same model multiple times
in the same project, or due to the simulator using the
same name for all models (e.g. dsin.txt, output.log in
Dymola).

The Python Multiprocessing Library (Python, 2015)
was used to implement the parallelization of simulation
runs. Multiprocessing is a package that supports
spawning processes using an API similar to the
threading module. The multiprocessing package offers
both local and remote concurrency, effectively side-
stepping the global Python interpreter lock by using
sub-processes instead of threads. Due to this the
multiprocessing module allows the programmer to

fully leverage multiple processors on a given machine.
The library provides the cross-platform support and is
compatible with both UNIX / Linux and Windows
operating systems.

We measured the performance of parallel simulation
against serial simulation. The list of models is taken
from the example models in the Modelica Standard
Library 3.2.1 (Modelica Association, 2013). The tests
have been performed with the following system
configuration:

OS: Windows 8, 64 bit
Processor: 4-core CPU @ 2.20 GHZ
RAM: 8 GB

A selection of measurements is listed in Table 1.

Table 1. List of measurements between serial and parallel
simulation using the OpenModelica simulator.

Models Serial [s] Parallel [s]
Speed-up

factor

10 134.9 35.5 3.80

26 349.3 84.1 4.15

52 648.1 195.6 3.31

100 1279.3 381.8 3.35

The table shows that parallel simulation is roughly
three to four times faster than serial simulation. If the
number of processor cores in the system increases, the
speed-up will increase accordingly, as long as there is
no shared global memory or disk bottleneck.

4.3 Parallel Regression Analysis

The regression testing as shown in Section 3 is
parallelized in the same way as described in the
previous section for the simulation runs. The
comparison of two result files including loading the
files is run in parallel for several result file pairs.

We measured the performance of serial regression
testing when compared with the parallel
implementation. The tests are performed with the same
system configuration as specified in Section 4.2. A
selection of measurements is listed in Table 2.

Table 2. List of measurements between serial and parallel
regression testing.

Total size

of files

[MB]

Files

com-

pared

Total

variables

compared S
e

ri
a

l
[s
]

P
a

ra
ll

e
l

[s
]

S
p

e
e

d
-u

p

fa
ct

o
r

1.2 20 387 9 4 2.25

2.4 45 872 19 8 2.37

17.6 100 11206 52 20 2.60

30.0 200 24164 90 27 3.33

47.6 325 36347 178 55 3.23

From the above measurements the parallel regression
testing is roughly two to three times faster than serial
regression testing.

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

676 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

5 Simulation of Connected FMUs

It is often required to simulate a model containing
several FMUs connected to each other. The FMU
simulator plugin of PySimulator so far has relied on
FMI 1.0 for Model Exchange. As preparation work to
support connected FMUs (FMI 2.0), we extended the
plugin to cover the FMI standard in version 2.0
(Modelica Association, 2014a) for Model Exchange
and for Co-Simulation of a single FMU. Further, we
have developed a new simulator plugin which allows
connection and simulation of several FMUs. Some
details are shown in this section.

5.1 Connections between FMUs

The information about how several FMUs are
connected is stored in an XML file. It contains the
details about the FMUs and their respective
connections required for the simulation. This makes it
possible to write the XML file manually and open it in
PySimulator.

We have also designed a connection GUI shown in
Figure 10 which allows the user to select FMUs and
make connections between them. The information is
saved into the XML file and can be used again in later
sessions.

Figure 10. Graphical user interface to connect FMUs.

The according XML schema in Figure 11 contains two
main sections namely fmus and connections. Each
fmu has a unique name, which is also used as instance
name in the simulator, and a path to define where the
FMU is stored. Each connection contains:

• fromFmuName: the instance name of the sending
FMU,

• toFmuName: the instance name of the receiving
FMU,

• fromVariableName or toVariableName: the
name of the variable as it is declared in the
ScalarVariable section of the FMU.

Figure 11. XML schema for connected FMUs.

If the units or the types of connected input and output
variables are different, then this is automatically
detected by the simulator before starting the
simulation. For example, if fromVariableName is a
Boolean variable and toVariableName is a Real
variable, then the connection is not allowed and will be
reported as an error.

5.2 Simulation Procedure

The new simulator plugin uses the existing FMU
Simulator in PySimulator as a base. The simulator
creates instances of the FMU Simulator classes
depending on the FMUs defined in the XML file. In
other words the FMUs are the component instances of
the model. When the user adds the FMU, the simulator
assigns a unique instance name to it. Thus, it is
possible to have several instances of the same FMU.
The simulator resolves the connections, i.e., getting
and setting the values, between the time steps. From
the point of view of the FMU simulator plugin it is just
another FMU, thus the interface to the simulator is the
existing FMU Python interface. Inside this Python
interface the functions of the different FMU instances
are called in the order defined by the connections. To
determine the connection order evaluation, Tarjan’s
algorithm (Tarjan, 1972) is used. Algebraic loops are
currently not supported. If there are no connections
between the FMUs, then the order does not matter and
each FMU is simulated independently.

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

677

The first prototype supporting the simulation of
connected FMUs for Co-Simulation is complete. Some
tests were performed using the Modelica library
FMITests.SimpleConnections (Modelica
Association, 2014b), see a plot of the results in Figure
12. The FMUs are generated using Dymola. The tests
are also provided as part of PySimulator’s examples.
The work on simulation of connected FMUs for Model
Exchange is still under development.

6 Conclusions and Future Work

Comparing results of model simulation is very
important for model portability and model evolution.

This paper presents a framework for regression
analysis that can simulate models very efficiently and
report how their results differ. Support for simulation
of models in FMU form or using several Modelica
tools including Dymola, SimulationX, and
OpenModelica was previously present in PySimulator
and has been extended in this work with a new
simulator plugin for Wolfram SystemModeler.

Efficient regression analysis is provided by
parallelization of model simulations and result
comparisons.

A first prototype to simulate connected FMUs for
Co-Simulation is complete. Ongoing work is focused
on having fully functional simulation of connected
FMUs for both Model Exchange and Co-Simulation.

The Modelica Association project System Structure

and Parameterization of Components of Virtual System

Design (SSP) aims at solving the problem where there
is need to design, simulate, and execute a network of
components. The project is in an early phase now but
we might consider using its results to describe the
connection of FMUs.

Acknowledgements

Part of the work is financed by the CleanSky Joint
Undertaking project PyModSimA (JTI-CS-2013-2-
SGO-02-064). This support is highly appreciated.
Financial support of DLR by BMBF (BMBF funding
code: 01IS12022A) for the FMU simulator in
PySimulator according to FMI 2.0 within the ITEA2
project MODRIO (ITEA 2 – 11004) is also highly
appreciated. The authors thank Jakub Tobolar (DLR
Institute of System Dynamics and Control) for his tests
and support of the regression testing feature in an
earlier stage and his implementation of the automatic

Figure 12. Simulation results of connected FMUs for Co-Simulation using an example from the Modelica Library
FMITests.SimpleConnections.

Automatic Regression Testing of Simulation Models and Concept for Simulation of Connected FMUs in
PySimulator

678 Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

DOI
10.3384/ecp15118671

generation of the simulation setup file by Dymola. The
authors also thank Martin Otter (DLR) for the fruitful
discussions about the topics presented in the paper.

References

Benjamin Edwards. Pythonica, 2012. https://github.com/
bjedwards/pythonica (accessed: 19th of May 2015).

Anand K. Ganeson, Peter Fritzson, Olena Rogovchenko,
Adeel Asghar, Martin Sjölund, and Andreas Pfeiffer. An
OpenModelica Python Interface and its use in
PySimulator. Proceedings of the 9th International

Modelica Conference, 3.-5. Sep. 2012, Munich, Germany.

ITI GmbH. Csv-compare tool, 2013. https://github.com/
modelica-tools/csv-compare (accessed: 19th of May
2015).

Modelica Association. Functional Mock-up Interface for
Model Exchange and Co-Simulation, Version 2.0, July 25,
2014. http://www.fmi-standard.org (accessed: 19th of May
2015).

Modelica Association. Functional Mock-up Interface.
Subversion repository, 2014. https://svn.fmi-
standard.org/fmi/branches/public/Test_FMUs/_FMIModel
icaTest/FMITest (accessed: 21st of July 2015).

Modelica Association. Modelica Standard Library 3.2.1,
2013. https://github.com/modelica/Modelica/releases/
tag/v3.2.1+build.2 (accessed: 30th of July 2015).

Martin Otter. Private communication, 2015.

Andreas Pfeiffer, Ingrid Bausch-Gall, and Martin Otter.
Proposal for a Standard Time Series File Format in HDF5.
Proceedings of the 9th International Modelica Conference,
3.-5. Sep. 2012, Munich, Germany.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin
Otter, and Matthias Reiner. PySimulator – A Simulation
and Analysis Environment in Python with Plugin
Infrastructure. Proceedings of the 9th International

Modelica Conference, 3.-5. Sep. 2012, Munich, Germany.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin
Otter, Matthias Reiner, and Jakub Tobolar. System
Analysis and Applications with PySimulator. Presentation

at the 7th MODPROD Workshop on Model-Based Product

Development, 4.-6. Feb. 2013, Linköping, Sweden.

Python: multiprocessing — Process-based “threading”
interface. https://docs.python.org/2/library/
multiprocessing.html (accessed: 20th of May 2015).

Robert Tarjan: Depth-first search and linear graph
algorithms. SIAM Journal on Computing, Vol.1, No.2,
1972.

Wolfram: Wolfram Mathematica. http://www.wolfram.com/
mathematica (accessed: 19th of May 2015).

Wolfram: Wolfram SystemModeler. https://www.wolfram.
com/system-modeler (accessed: 19th of May 2015).

Session 10A: Testing & Diagnostics

DOI
10.3384/ecp15118671

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

679

