198 research outputs found

    Does the anaesthetic influence behavioural transmission of the monogenean Gyrodactylus gasterostei Glaser, 1974 off the host?

    Get PDF
    The aim of this study was to investigate the use of the anaesthetic 2-phenoxyethanol on the transmission factors of gyrodactylid and to ascertain how this may affect in the colonisation of new hosts using the Gyrodactylus gasterostei Glaser, 1974 - Gasterosteus aculeatus L. model which is a simple and successful system to examine aspects of transmission of parasites from live and dead fish. Laboratory experiments include determining the maturity (presence of male copulate organ) and reproductive (presence of daughter) status of transmitting worms, in order to consider the factors that influence parasite option to migrate to a new individual of the same host species. This study demonstrates that parasites with a Male Copulate Organ (MCO) present are more likely to abandon the host and attempt a host transfer. The use of the anaesthetic 2-phenoxyethanol does not affect transmission of gyrodactylids which leave the host to colonise a new host. Finally, the use of other anaesthetic although its relative importance with respect to transmission remains uncertain.Department of the Environment, Food and Rural Affairs (Defra); Overseas Research Students Awards Scheme (ORSAS) UK; Consejo Nacional Ciencia y Tecnologia, Mexico CONACyT [171032]info:eu-repo/semantics/publishedVersio

    Analysing sex determination in farmed fish using Next Generation DNA sequencing

    Get PDF
    The aim of the current thesis was the analysis of the genetics of sex determination of farmed fish with sexual dimorphism, using Next Generation Sequencing. Three different species of farmed fish with sex-determining systems of varying complexity were studied. Both full-sibs and more distantly related specimens of Atlantic halibut (Hippoglossus hippoglossus), Nile tilapia (Oreochromis niloticus) and European sea bass (Dicentrarchus labrax) were used for this study. Application of Restriction-site Associated DNA sequencing (RAD-seq) and double digest Restriction-site Associated DNA sequencing (ddRAD-seq), two related techniques based on next generation sequencing, allowed the identification of thousands of Single Nucleotide Polymorphisms (SNPs; > 3,000) for each of the above species. The first SNP-based genetic maps for the above species were constructed during the current study. The first evidence concerning the location of the sex-determining region of Atlantic halibut is provided in this study. In the case of Nile tilapia both novel sex-determining regions and fine mapping of the major sex-determining region are presented. In the study of European sea bass evidence concerning the absence of a major sex-determining gene was provided. Indications of putative sex-determining regions in this species are also provided. The results of the current thesis help to broaden current knowledge concerning sex determination in three important farmed fish. In addition the results of the current thesis have practical applications as well, towards the production of mono-sex stocks of those species for the aquaculture industry

    Genotyping Strategies Using ddRAD Sequencing in Farmed Arctic Charr (Salvelinus alpinus)

    Get PDF
    Simple SummaryAnimal breeding in recent years has benefited greatly from the availability of large-scale genetic information. The most widely applied genomic tools in selective breeding are specialized arrays that use DNA hybridization. However, the high financial investments accompanying this practice impair the profitability of emerging aquaculture species, including Arctic charr. The aim of the current study was to assess and compare the potential of two cost-efficient genotyping strategies applicable in a variety of breeding-related tasks, such as pedigree verification, genetic diversity screening and detection of genomic regions that are associated with phenotypes of economic importance. Both strategies are based on reduced representation sequencing but differ in sequencing coverage (low and high). The low coverage strategy offers a higher density of DNA markers, but also presents a greater proportion of missing data in the marker set and is characterized by more uncertainty in determining heterozygosity compared to high coverage. Our results show that while high coverage genotyping performs better in genetic diversity and kinship analyses, a low coverage strategy is more successful in identifying genomic regions associated with phenotypic traits, leading to the conclusion that both strategies could be of value into selection schemes.Incorporation of genomic technologies into fish breeding programs is a modern reality, promising substantial advances regarding the accuracy of selection, monitoring the genetic diversity and pedigree record verification. Single nucleotide polymorphism (SNP) arrays are the most commonly used genomic tool, but the investments required make them unsustainable for emerging species, such as Arctic charr (Salvelinus alpinus), where production volume is low. The requirement to genotype a large number of animals for breeding practices necessitates cost effective genotyping approaches. In the current study, we used double digest restriction site-associated DNA (ddRAD) sequencing of either high or low coverage to genotype Arctic charr from the Swedish national breeding program and performed analytical procedures to assess their utility in a range of tasks. SNPs were identified and used for deciphering the genetic structure of the studied population, estimating genomic relationships and implementing an association study for growth-related traits. Missing information and underestimation of heterozygosity in the low coverage set were limiting factors in genetic diversity and genomic relationship analyses, where high coverage performed notably better. On the other hand, the high coverage dataset proved to be valuable when it comes to identifying loci that are associated with phenotypic traits of interest. In general, both genotyping strategies offer sustainable alternatives to hybridization-based genotyping platforms and show potential for applications in aquaculture selective breeding

    Genomic Prediction of Resistance to Pasteurellosis in Gilthead Sea Bream (Sparus aurata) Using 2b-RAD Sequencing

    Get PDF
    Gilthead sea bream (Sparus aurata) is a species of paramount importance to the Mediterranean aquaculture industry, with an annual production exceeding 140,000 metric tons. Pasteurellosis due to the Gram-negative bacterium Photobacterium damselae subsp. piscicida (Phdp) causes significant mortality, especially during larval and juvenile stages, and poses a serious threat to bream production. Selective breeding for improved resistance to pasteurellosis is a promising avenue for disease control, and the use of genetic markers to predict breeding values can improve the accuracy of selection, and allow accurate calculation of estimated breeding values of nonchallenged animals. In the current study, a population of 825 sea bream juveniles, originating from a factorial cross between 67 broodfish (32 sires, 35 dams), were challenged by 30 min immersion with 1 x 10(5) CFU virulent Phdp. Mortalities and survivors were recorded and sampled for genotyping by sequencing. The restriction-site associated DNA sequencing approach, 2b-RAD, was used to generate genome-wide single nucleotide polymorphism (SNP) genotypes for all samples. A high-density linkage map containing 12,085 SNPs grouped into 24 linkage groups (consistent with the karyotype) was constructed. The heritability of surviving days (censored data) was 0.22 (95% highest density interval: 0.11-0.36) and 0.28 (95% highest density interval: 0.17-0.4) using the pedigree and the genomic relationship matrix respectively. A genome-wide association study did not reveal individual SNPs significantly associated with resistance at a genome-wide significance level. Genomic prediction approaches were tested to investigate the potential of the SNPs obtained by 2b-RAD for estimating breeding values for resistance. The accuracy of the genomic prediction models (r = 0.38-0.46) outperformed the traditional BLUP approach based on pedigree records (r = 0.30). Overall results suggest that major quantitative trait loci affecting resistance to pasteurellosis were not present in this population, but highlight the effectiveness of 2b-RAD genotyping by sequencing for genomic selection in a mass spawning fish species

    Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics

    Get PDF
    © 2015 American Chemical Society. Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed

    Molecular Dynamics Simulations of Small Molecule Permeation Through Lipid Membranes

    Get PDF
    PhDPassive permeation through biological membranes is an important mechanism for transporting molecules and regulating the cellular content. Studying and understanding passive permeation is also extremely relevant to many industrial applications, including drug design and nanotechnology. In vivo membranes typically consist of mixtures of lamellar and nonlamellar lipids. Lamellar lipids are characterised by their tendency to form lamellar bilayer phases, which are predominant in biology. Nonlamellar lipids, when isolated, instead form non-bilayer structures such as inverse hexagonal phases. While mixed lamellar/nonlamellar lipid membranes tend to adopt the ubiquitous bilayer structure, the presence of nonlamellar lipids is known to have profound effects on key membrane properties, such as internal distributions of stress and elastic properties. This dissertation examines permeation through lamellar and nonlamellar lipid membranes by utilising atomistic molecular dynamics simulations in conjunction with two di erent methods, the z-constraint and the z-restraint, in order to obtain transfer free energy profiles, diffusion profiles and permeation coefficients. An assessment of these methods is performed in search for the optimal, with the goal to create an automated, accurate and robust permeation study framework. Part of the dissertation involves the creation of the corresponding software. Furthermore, this work examines the effect of changing the lamellar vs. nonlamellar lipid composition on the passive permeation mechanism of a series of 13 small molecules and drugs. These nonlamellar lipids are known to affect the lateral pressure distribution inside the membranes. This work investigates the hypothesis that the differences in lateral pressure should increase the resistance to permeation. The results indicate that, upon addition of nonlamellar lipids, permeation is hindered for small molecules but is facilitated for the largest. All results are in agreement with previous experimental and computational studies. This work represents an advancement towards the development of more realistic in silico permeability assays, which may have a substantial future impact in the area of rational drug design

    Microbiome structure of milt and ovarian fluid in farmed Arctic charr (Salvelinus alpinus)

    Get PDF
    Limited knowledge exists about the residing microbiome in gamete-related samples in fish. A potential effect between the seminal microbiome composition and sperm quality traits has been previously suggested in humans and livestock. Using a metabarcoding approach, we aimed to gain insights into the structure of the residing prokaryotes and microbial eukaryotes in ovarian fluid (n = 10) and milt (n = 84) from farmed Arctic charr -a species with highly variable reproductive success in captivity. In addition, sperm quality traits were recorded on the sampled males to investigate potential associations with the residing seminal microbiome. Higher microbial diversity was found in the ovarian fluid compared to the milt habitat. Even though the residing microbiome showed distinct differences between the two habitats, substantial overlap was observed, with >70% of the milt core microbiome being found in the ovarian fluid habitat. Statistically significant associations were found be-tween the Shannon diversity index and sperm motility-related traits. Additionally, a fungal operational taxo-nomic unit (OTU) potentially belonging to the Leotiomycetes class was associated with sperm concentration and motility. Overall, our study documents the microbiome structure of gamete-related samples from Arctic charr. Even though some associations were obtained between sperm quality parameters and either microbiome di-versity or with a fungal OTU, follow-up studies on a larger scale with more tank replicates are needed to confirm the robustness and causality of these relationships

    Evaluating the potential of improving sperm quality traits in farmed Arctic charr (Salvelinus alpinus) using selective breeding

    Get PDF
    Arctic charr (Salvelinus alpinus) is a high-value species for the Nordic aquaculture. The highly variable reproductive performance that is commonly observed in commercial farms is hindering the expansion of the Arctic charr industry in Sweden. Traits related to sperm motility (total motility; curvilinear velocity; average path velocity; straight-line velocity) and concentration can play a pivotal role in male fertility. Selective breeding practices could offer solutions and contribute to improving male fertility. The current study aimed to investigate the magnitude of genetic variance for sperm quality traits in a selectively bred population of Arctic charr from Sweden and evaluate the possibility of their improvement through selection. Sperm motility and concentration were recorded using a computer-assisted semen analysis (CASA) system and a NucleoCounter, respectively, in over 400 males from year-class 2017. Double digest restriction-site associated DNA sequencing (ddRAD-seq) was applied in a subset of the recorded animals (n = 329), resulting in the detection of over 5000 single nucleotide polymorphisms (SNPs). Moderate heritability estimates were obtained for the recorded semen traits using both pedigree (0.21-0.32; SE 0.09) and genomic (0.23-0.26; SE 0.09) relationship matrices. A genome-wide association study (GWAS) detected a single SNP significantly associated (P < 1e-05) with total sperm motility on chromosome LG7 in relatively close proximity (500 Kb) to PTPN11 a gene previously associated with sperm quality traits in mammals. Moreover, weighted single-step genomic best linear unbiased prediction (WssGBLUP) pinpointed genomic regions explaining more than 3 % of the additive genetic variance for both the motility traits and the sperm concentration. Finally, the efficiency of genomic prediction was tested using a 3-fold cross-validation scheme. Higher prediction accuracy for total motility and velocities (both curvilinear and average path) was obtained using genomic information (0.26-0.29, SE 0.03-0.06) compared to pedigree (0.20-0.28, SE 0.04-0.07), while for sperm concentration a pedigree-based model (0.22 SE 0.03) was more efficient than the genomic model (0.14 SE 0.04). Overall, our results indicate that the recorded sperm quality traits are heritable, and could be improved through selective breeding practices

    Stress testing the ELBA water model

    Get PDF
    © 2015 © 2015 The Author(s). Published by Taylor & Francis. The ELBA coarse-grained model describes a water molecule as a single-site Lennard-Jones particle embedded with a point dipole. ELBA was previously reported to capture several properties of real water with relatively high accuracy, while being up to two orders of magnitude more computationally efficient than atomistic models. Here, we stress test the ELBA model by investigating the temperature and pressure dependences of two most important water properties, the liquid density and the self-diffusion coefficient. In particular, molecular dynamics simulations are performed spanning temperatures from 268 K up to 378 K and pressures from 1 atm up to 4000 atm. Comparisons are made with literature data from experiments and from simulations of traditional three-site atomistic models. Remarkably, the ELBA results show an overall similar (and sometimes higher) accuracy with respect to the atomistic data. We also calculate a number of additional thermodynamic properties at ambient conditions, namely isothermal compressibility, shear viscosity, isobaric heat capacity, thermal expansion coefficient and melting point. The accuracy of ELBA is relatively good compared to atomistic and other coarse-grained models

    Insights from the early generations of the Swedish rainbow trout (Oncorhynchus mykiss) breeding program

    Get PDF
    This study aimed to gain insights about the status of the Swedish breeding program through studying key phenotypic traits. In total, 133 and 73 full-sib families were formed during the reproductive seasons of 2016 and 2019, respectively. Growth-related recordings were available from two occasions: & SIM; 9 and 24-27 months post-hatch. A preliminary descriptive analysis of the fecundity and early embryo survival identified substantial differences in favor of G0 (year class 2016) which was partly explained by the fact that first-time 3-year-old spawners were used in G1 (year class 2019). Moderate to high heritability values (0.23-0.49) were obtained for body length and weight across both time points and generations. Furthermore, the prediction accuracy of the estimated breeding values was & SIM;0.65, while the expected genetic gain was 36 g per year. Overall, our results demonstrate the positive performance of the Swedish rainbow trout breeding program
    corecore