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Genomic prediction of resistance to pasteurellosis in
gilthead sea bream (Sparus aurata) using 2b-RAD
sequencing
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ABSTRACT Gilthead sea bream (Sparus aurata) is a species of paramount importance to the Mediterranean
aquaculture industry, with an annual production exceeding 140,000 metric tonnes. Pasteurellosis due to the
Gram-negative bacterium Photobacterium damselae subsp. piscicida (Phdp) causes significant mortality,
especially during larval and juvenile stages, and poses a serious threat to bream production. Selective breeding
for improved resistance to pasteurellosis is a promising avenue for disease control, and the use of genetic
markers to predict breeding values can improve the accuracy of selection, and allow accurate calculation of
estimated breeding values (EBV) of non-challenged animals. In the current study, a population of 825 sea
bream juveniles, originating from a factorial cross between 67 broodfish (32 sires; 35 dams), were challenged
by 30 min immersion with 1 × 105 CFU virulent Phdp. Mortalities and survivors were recorded and sampled
for genotyping by sequencing. The 2b-RAD sequencing approach was used to generate genome-wide SNP
genotypes for all samples. A high-density linkage map containing 12,085 SNPs grouped into 24 linkage
groups (consistent with the karyotype) was constructed. The heritability of surviving days (censored data)
was 0.22 (95% highest density interval: 0.11-0.36) and 0.28 (95% highest density interval: 0.17-0.4) using
the pedigree and the genomic relationship matrix respectively. A genome wide association study did not
reveal individual SNPs significantly associated with resistance at a genome wide significance level. Genomic
prediction approaches were tested to investigate the potential of the SNPs obtained by 2bRAD for estimating
breeding values for resistance. The accuracy of the genomic prediction models (r = 0.38 - 0.46) outperformed
the traditional BLUP approach based on pedigree records (r = 0.30). Overall results suggest that major
quantitative trait loci (QTL) affecting resistance to pasteurellosis were not present in this population, but
highlight the effectiveness of 2b-RAD genotyping by sequencing for genomic selection in a mass spawning
fish species.
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INTRODUCTION

Infectious diseases are a major threat to the profitability, sustain-
ability and welfare status of farmed fish production (Yáñez et al.
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2014). Gilthead sea bream (Sparus aurata) is one of the most
important farmed fish in Mediterranean countries, with an an-
nual production of approximately 146,000 metric tonnes (FEAP
http://www.feap.info/default.asp?SHORTCUT=582). Pasteurellosis
due to Photobacterium damselae subsp. piscicida is one of the pri-
mary disease problems faced by the sea bream aquaculture indus-
try. High levels of mortality ( 90 – 100 %) are frequently observed,
especially in periods where water temperature rise above 180C,
with larvae and juveniles being most susceptible (Noya et al. 1995;
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Magarinos et al. 2001). Selection for improved genetic resistance in
aquaculture breeding schemes is a valuable tool to help prevent or
reduce disease outbreaks, especially where effective therapeutic
agents or vaccines are lacking (Bishop and Woolliams 2014). Mod-
erate to high heritabilities have been estimated for resistance to
many common diseases, indicating that rapid genetic progress can
be made through selective breeding (Odegå rd et al. 2011). In addi-
tion, recent technological advances in genome-wide sequencing
and genotyping technology offer the potential of deriving more
accurate estimated breeding values for individual selection candi-
dates, as compared to the classical breeding approach where breed-
ing values are typically estimated at a family level (Goddard and
Hayes 2009). The application of genomic data to breeding is partic-
ularly valuable for disease resistance, which is typically expensive
or impossible to measure on the selection candidates themselves.
While marker-assisted selection for major disease resistance loci
has been well documented in Atlantic salmon (Salmo salar) breed-
ing programmes (Houston et al. 2008, 2010; Moen et al. 2009), few
successful examples exist for other farmed finfish species. Genomic
prediction uses genome-wide markers to estimate breeding values,
and can deliver significant improvements in selection accuracy
compared to traditional pedigree-based approaches, even for traits
with a polygenic architecture (Odegå rd et al. 2014; Tsai et al. 2015,
2016; Vallejo et al. 2016).

Previous studies into the genetic resistance to pasteurellosis
in sea bream have detected resistance QTL using microsatellite
markers (Antonello et al. 2009; Massault et al. 2010). However,
these studies were restricted by the low resolution of microsatellite
markers, as compared to the high density SNP genotypes offered
by SNP arrays (Houston et al. 2014) or genotyping by sequencing
approaches (Davey et al. 2011). Restriction-site associated DNA
(RAD) sequencing is a reduced representation high-throughput
sequencing technique for the concurrent detection and genotyping
of SNP markers in multiplexed samples with a unique nucleotide
barcode (Baird et al. 2008). RAD sequencing and similar genotyp-
ing by sequencing techniques rely on digestion of the genomic
DNA with a restriction enzyme, and subsequent high-depth se-
quencing of the flanking regions. These techniques have been
applied in several studies of aquaculture species to generate high-
density linkage maps (Gonen et al. 2014; Palaiokostas et al. 2013b,a,
2015a,b) and perform genome wide association studies (GWAS)
in a cost-efficient manner (Campbell et al. 2014). A flexible and
easily-streamlined variation of RAD sequencing named 2b-RAD
sequencing utilises type IIB restriction enzymes to cleave genomic
DNA upstream and downstream of the target site (Wang et al.
2012). In theory, 2b-RAD samples all the endonuclease recogni-
tion sites for sequencing, circumventing potential biases that may
result from the size selection step in the original RAD protocol (Pu-
ritz et al. 2014). 2b-RAD data have also been applied for genetics
studies in aquaculture species, for example to test genomic predic-
tion in a limited number of Yesso scallop (Patinopecten yessoensis)
families (Dou et al. 2016).

In this study, we used 2b-RAD sequencing to identify and geno-
type genome-wide SNPs in juvenile sea bream challenged with vir-
ulent Phdp bacteria, and recorded for survival time. A high-density
SNP linkage map was constructed and a GWAS was performed
to test the association between individual loci and resistance to
pasteurellosis. Finally, genomic prediction of resistance was tested
using several genomic selection models and marker densities to
evaluate its potential in selection for improved resistance to pas-
teurellosis in sea bream.

MATERIALS AND METHODS

Sample collection and preparation
The experimental population used in the present experiment was
part of a larger group of juvenile sea bream that were subjected
to an experimental challenge with Phdp to estimate heritability
of disease resistance as reported (Antonello et al. 2009). Fish were
provided by the fish farm Valle Ca’ Zuliani (Monfalcone, Italy).
All broodstock fish were originally sampled from wild popula-
tions. Fertilized eggs were collected on the same day (year 2006)
from natural mass spawning events occurring in four different
broodstock tanks, therefore all fish had approximately the same
age. Each broodstock tank contained 50-60 fish with a sex ratio 3:1
females:males. Approximately 10,000 eggs were collected, pooled,
and kept in a separate tank without any size sorting until 110 days
old. All fish were then transferred to the Istituto Zooprofilattico
Sperimentale delle Venezie (Legnaro, Italy) for the experimental
challenge. Fish were divided into two aerated tanks (A and B) each
with 800 l of re-circulating seawater (salinity 35 ppt). Water tem-
perature was maintained at 190C. After 1 week of acclimation, fish
were experimentally infected with a highly virulent strain of Phdp
(strain 249/ittio99) as described in Antonello et al.(2009). Mortality
was monitored daily for 19 days (Table S1). Mortality levels were
nearly identical for both tanks, and only fish from tank A were
included in the current study. Fish used in the challenge origi-
nated from 67 broodfish (32 sires; 35 dams). As already described
(Antonello et al. 2009; Massault et al. 2010), parentage analysis was
carried out using a panel of nine microsatellite loci (Table S2).

2b-RAD library preparation and sequencing
A total of 892 2b-RAD libraries (67 parents and 825 juveniles) were
constructed by following the protocol reported by Wang et al. 2012
with some modifications (Pecoraro et al. 2016). Template DNA
for each individual (500 ng) was digested in 6 µl reaction volume
using 1 U AlfI at 370C for 1 h followed by enzyme heat inactivation
at 650C for 20 min. The ligation reaction was performed by com-
bining 5 µl of digested DNA with 20 µl ul of a ligation master mix
containing 0.4 µM each of two library-specific adaptors (with fully
degenerate cohesive ends 5’-NN-3’) 0.2 mM ATP (NEB) and 1000
U T4 DNA ligase (CABRU, Arcore, Italy). Ligation was carried
out at 160C for 3 h with subsequent heat inactivation for 10 min at
650C.

Sample-specific barcodes were designed through a Barcode
generator program (http://comailab.genomecenter.ucdavis.edu/index.
php/Barcode_generator). 50 µl PCR reactions were prepared con-
taining 12 µl of ligated DNA product, 0.2 µl M of each primer, 0.3
mM dNTP, 5X Phusion HF buffer and 2 U Phusion high-fidelity
DNA polymerase (NEB). Each library was PCR amplified using
the following conditions: 13 cycles of 950C for 5 s, 600C for 20 s
and 720C for 5 s.

Adaptor and primer sequences were those reported in Wang et
al. (2012). PCR products were purified using the SPRIselect purifi-
cation kit (Beckaman Coulter, Pasadena, CA, USA) and quantified
through a Qubit 2.0 Fluorometer (Invitrogen). The quality of all
amplicon libraries was checked at 1.8% agarose gel. Additionally,
the quality of 10% of randomly-selected libraries, was also assessed
by running them on an Agilent 2100 Bioanalyzer.

Individual libraries were pooled into equimolar amounts by
adopting two different multiplexing strategies for parents (24 li-
braries / pool) and offspring (48 libraries / pool). The quality of
each pool was verified on Agilent 2100 Bioanalyzer. Finally, pooled
libraries were sequenced on an Illumina HiSeq2500 platform (Illu-
mina, San Diego, CA, USA) using 50 base single-end sequencing
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n Table 1 Gilthead sea bream linkage map

LG No. markers Length (cM)

1 607 202

2 602 192

3 558 183

4 560 206

5 554 182

6 536 167

7 530 159

8 522 171

9 521 138

10 518 197

11 508 147

12 499 142

13 500 200

14 489 156

15 485 162

16 484 121

17 480 163

18 470 164

19 471 154

20 461 157

21 455 134

22 454 130

23 452 157

24 366 115

Total 12,089 3,899

(v3 chemistry).

Genotyping RAD alleles
Quality and adapters trimming of sequenced reads were per-
formed by running a customized script (Pauletto et al. 2016; Peco-
raro et al. 2016), obtaining 34-bp long fragments. SNP calling was
performed using STACKS v1.23 (Catchen et al. 2011).

For each family/cross, individual genotypes were constructed
using components of the STACKS pipeline as follows: i) for
each individual, ustacks program was employed for building
loci from all QC passed reads using the following parameters
−m10 − M2 − N3 for parents and −m5 − M2 − N3 for offspring,
ii) a catalog of loci unique for all families/crosses was constructed
by using all parents’ reads on cstacks program, then iii) each set
of parents / offspring per cross was matched separately against
such a catalogue (sstacks program) followed by genotype assign-
ment by setting the following parameters on genotypes program:
−c −−min_hom_seqs 7 −−max_het_seqs 0.05.

Unique tags created by STACKS were mapped against a draft
assembly of Sparus aurata genome (L. Bargelloni, personal com-

munication). Mapping analysis was carried out by means of CLC
Genomic Workbench 7.5 with stringent criteria (length fraction =
0.9; similarity fraction = 0.9; nonspecific match handling= ignore).

Linkage map construction

Linkage map construction was performed using Lep-Map v2 (Ras-
tas et al. 2013). Quality control was performed for each full sib-
ling family by excluding SNPs with minor allele frequency below
0.05 and those deviating from expected Mendelian segregation
(P < 0.001). Linkage groups were formed using a minimum LOD
threshold value of 8 in the ‘SeparateChromosomes’ module, al-
lowing a maximum distance between consecutive SNPs of 50 cM.
Marker order within each linkage group was performed using the
‘OrderMarkers’ module, where the likelihood of marker order is
computed by using a hidden Markov model (Rastas et al. 2013).
Map distances were calculated in centiMorgans (cM) using the
Kosambi mapping function.
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Trait definition and heritability estimation
Heritability of surviving days was estimated with the R/BGLR
software (Pérez and de Los Campos 2014) using both the pedigree-
based and the genomic relationship matrix. The animal model was
applied:

y = µ + Zu + e,
where y vector of recorded phenotypes (days to death; animals

surviving at the end of the experiment treated as missing values
sampled from corresponding truncated normal distribution with
the resulting values being higher or equal to 20), µ vector of the
intercept, Z incidence matrix relating phenotypes with the random
animal effects, u is the vector of animal effects N(0,Aσ2

g) with
either A corresponding to the pedigree-based relationship matrix
or G the corresponding genomic relationship matrix, and σ2

g the
additive genetic variance. Finally, e is a vector of residuals. The
G matrix was estimated according to VanRaden (2008) using the
kin function of the R/synbreed package (Wimmer et al. 2012) (File
S1). The additive genetic variance was estimated by applying
Markov Chain Monte Carlo (MCMC) using a prior following the
inverse-scaled χ2 distribution (df=5), using 10M iterations out of
which the first 10% were discarded, and values were stored every
1,000 iterations thereafter. Convergence of the resulting posterior
distribution was assessed both visually (inspecting the resulting
MCMC plots) and analytically with the Geweke diagnostic using
R/boa v1.1.7 (Smith 2007). Heritability for the number of surviving
days was estimated using the following formula:

h2 =
σ2

g

σ2
g+σ2

ε

where σ2
g the estimated additive genetic variance and σ2

ε the
residual variance.

Genome wide association analysis (GWAS)
To test the association between individual SNPs and resistance
to pasteurellosis (measured as surviving days), a GWAS was per-
formed using R/rrBLUP (Endelman 2011). The mixed model ap-
plied (Yu et al. 2006) had the following format:

y = Xα + Zu + e
where y is the vector of the phenotypes (surviving days or

overall survival), α is the vector of unknown marker effects, u is
the vector of animal random effects N(0,Gσ2

g) ) and e is the vector
of residuals. The matrix G represents the genomic relationship
matrix as described above, and σ2

g the additive genetic variance
estimated using REML. X and Z are incidence matrices relating y
to α and u, respectively. According to the above model additive
SNP effects are treated as fixed effects, with the inclusion of the
random animal effect to decrease spurious associations due to
(genomic) relationships between the animals (Yu et al. 2006). The
genome-wide significance threshold for the estimated additive
SNP effects was calculated using a Bonferroni correction (0.05 /
N), where N represents the number of QC-filtered SNPs across the
entire genome.

Genomic Prediction
A genomic prediction approach was conducted to quantify the ac-
curacy of the breeding values estimated using the SNP markers to
predict the phenotypic trait values (surviving days). SNPs with >
15% missing genotypes were removed in order to minimize impact
of imputed genotypes, since used software cannot handle missing
genotypes. Missing values of the remaining SNPs were imputed
using R/synbreed (Wimmer et al. 2012). Genomic breeding values
were estimated using rrBLUP, BayesA, BayesB (Meuwissen et al.
2001) and BayesC (Habier et al. 2011) models using the R/BGLR

(Pérez and de Los Campos 2014) software. The above models differ
in regard to the prior distribution of the marker effects. Briefly,
rrBLUP by using the Gaussian distribution, induces homogenous
shrinkage across markers, while in BayesA the usage of a scaled-
t distribution induces marker size effect shrinkage allowing for
variable marker effect sizes. Models BayesB and BayesC also per-
form variable selection, with the difference between the two being
the usage of a scaled-t or a Gaussian prior density respectively
(Meuwissen et al. 2001; de los Campos et al. 2013). To compare the
accuracy of genomic EBVs to the pedigree-based EBVs, pedigree-
based BLUP (PBLUP) (Henderson 1975) was applied to calculate
breeding values using the same software. The general form of the
fitted models was the following:

y = η+ ε,
The linear predictor η in the case of rrBLUP, BayesA, BayesB

and BayesC had the following general form:
η = 1µ + X1β1,
where µ is the intercept, X1 the design matrix relating the phe-

notypes to the markers, β1 is the vector of marker effects with
corresponding priors depending on the model used. Marker cod-
ing followed the format where the heterozygotes were coded as 1
and the two alternate homozygotes as 0 and 2. The linear predictor
η in the case of pedigree BLUP had the following form:

η = 1µ + u,
where u is the animal random effect vector N(0,Aσ2

g) with the
matrix A representing the pedigree estimated relationship ma-
trix. The parameters of the above models were estimated through
MCMC (110,000 iterations; burn-in: 10,000; thin: 100).

Assessment of the accuracy of breeding value predictions was
conducted according to the following procedure. The data set was
randomly split into a training set (n = 578 animals) and a validation
set (n = 200). The above was repeated 100 times with the obtained
prediction accuracies being adjusted for the trait heritability for
each tested model. The genomic estimated breeding values (GEBV)
for each replicate of the validation data set were estimated as:

GEBV = Xu,
where X the incidence matrix relating GEBV with SNP geno-

types and u the vector of estimated SNP effects from the corre-
sponding training data set. The accuracy of the estimated GEBV
was approximated as:

r = (GEBV, y) / h,
where y the vector of recorded phenotypes and h the square

root of the heritability. In all tested scenarios the heritability esti-
mated using the genomic relationship matrix was used. Reported
accuracies for each tested model refer to the mean accuracy of the
above-mentioned 100 replicates of validation data sets. In order
to test the predictive ability of varying SNP densities, the above
procedure was followed using (i) SNPs spaced > 1 cM apart (2,614
SNPs) or (ii) SNPs spaced > 5 cM apart (705 SNPs) on the linkage
map.

Data Availability

Raw reads were deposited in EBI repository under project ID
SRP081498. Table S1 contains the phenotypic data. Table S2 con-
tains the pedigree. Table S3 and S4 contain summary of obtained
reads for parental and offspring samples respectively. Table S5
contains the location of the linkage map SNPs. Table S6 contains
the genotypic data. File S1 contains customed R script used for
genomic prediction.
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RESULTS

Disease challenge
The challenged population consisted of 75 full sibling families
with a mean family size of 10, originating from a factorial cross
between 67 broodfish (32 sires; 35 dams). The largest full-sib
family consisted of 114 animals, while the smallest had only 2
animals (3 full-sib families). The overall survival at the end of
the pasteurrelosis challenge was 4.7%. Observed mortality levels
showed three distinct peaks on day 7 (10.4 % loss), day 11 (14 %
loss) and day 15 (5.7 % loss) followed by a steady reduction in
daily mortality rate (Figure 1).

Figure 1 . Distribution of surviving days across disease challenge.
Frequency of mortalities per day during 19 days of challenge. Sur-
vivors were assigned a value of 20.

Genotyping RAD alleles
The mean number of raw reads was 8.76 million (M) and 4.51 M
while the number of reads passing QC was 7.74 M (88 %) and 3.69
M (81 %) for parents (Table S3) and offspring (Table S4), respec-
tively. The STACKS catalogue consisted of 202,598 unique 2b-RAD
loci, of which 73,876 contained at least one SNP in the parents (EBI
repository SRP081498). To confirm the identity of loci created by
STACKS, the 202,598 tags of the catalog were mapped against a
Sparus aurata draft reference genome assembly (unpublished data).
A high percentage of 2b-RAD loci were successfully mapped, with
93.5 % of tags showing a unique match to the reference genome. In
order to maximise the number of informative SNPs and minimise
the amount of missing or erroneous data, RAD-tags that were re-
trieved in at least 75% of the samples, and that carried only one
or two SNPs were retained. 48 animals with missing data > 30%
were excluded from subsequent analysis. A total of 21,974 putative
SNPs were finally used for construction of the genetic map from
777 disease challenged offspring (genotypic missing data < 30%)
and their corresponding 67 parents.

Linkage Map
The linkage map consisted of 12,085 SNPs that were grouped into
24 linkage groups, in accordance with gilthead sea bream kary-
otype, with a total map length of 3,899 cM (Table 1,Figure2; Table
S5). The remaining SNPs (9,889) either failed to pass QC filters, or
were not placed on the resulting linkage groups during mapping,
and these were discarded. The female and male maps were com-
parable with total lengths of 3,822 cM and 4,010 cM respectively.
The number of SNPs per chromosome ranged between 366 to 607
(mean = 503; s.d = 53), while linkage group length ranged between
115 and 202 cM (mean = 162; s.d = 26). The correlation between
number of SNPs and corresponding chromosome map length was
0.74 (n = 24 linkage groups).

Figure 2 The Gilthead sea bream linkage map. The heatmap on
the right side provides scale of colour coding for the size of SNP
clusters.

Heritability estimation and Genome wide association analysis
(GWAS)
The heritability of surviving days (censored data) was 0.22 (95%
highest density interval: 0.11-0.36) and 0.28 (95% highest density
interval: 0.17-0.4) using the pedigree and the genomic relation-
ship matrix respectively of the 777 disease challenged offspring.
No SNPs surpassed the Bonferroni-corrected genome-wide sig-
nificance threshold (P = 4.1x10−6; α = 0.05; Table S6). The
SNPs with the lowest p-values (P < 10−3) were located in linkage
groups 1 - 3, 10, 17, 20 and 21 (Figure 3).

Genomic Prediction
Genomic prediction was tested as a means of obtaining breeding
values, and compared to prediction using a pedigree-based ap-
proach (File S1). The prediction was conducted using genotype
information from 11,239 SNP markers (passed QC filters set for ge-
nomic prediction) for the 777 disease challenged animals that were
randomly split in training (n=578) and validation (n=200) datasets.
The application of all the genomic prediction models resulted in
higher accuracies than those achieved using pedigree-based BLUP
(Table 2). Prediction accuracy with PBLUP was 0.3, and versus 0.38
to 0.46 for the genomic prediction models, with highest accuracy
being observed using the BayesA method. Prediction accuracy
dropped when more sparse SNP marker datasets were used with
the last scenario (utilizing SNPs > 5cM apart) giving similar accu-
racies with the ones obtained by using the pedigree-based BLUP.
In the scenario of utilizing only SNPs located more than 1 cM
apart on the linkage map (2,614 SNPs) accuracies ranged between
0.3 and 0.36, with the highest accuracy obtained using rrBLUP.
For the dataset utilizing only SNPs located more than 5 cM apart
(705 SNPs) accuracies ranged between 0.29 - 0.31 with highest
accuracies obtained using rrBLUP and BayesA.

DISCUSSION

Gilthead sea bream (Sparus aurata) is a farmed species of
paramount importance for Mediterranean aquaculture. While
vaccines can offer some protection against pasteurellosis, the low
immune competence observed in larval and juvenile stages renders
this protection only temporary (Antonello et al. 2009). Breeding for
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n Table 2 Genomic prediction accuracies for surviving days

Model Accuracya Accuracy SNPs 1cM apart b Accuracy SNPs 5cM apartc

pBLUP 0.3 (se) - -

rrBLUP 0.44 (sed ± 0.04) 0.36 (se ± 0.03) 0.31 (se ± 0.04)

BayesA 0.46 (se ± 0.03) 0.35 (se ± 0.03) 0.31 (se ± 0.04)

BayesB 0.38 (se ± 0.03) 0.30 (se ± 0.04) 0.29 (se ± 0.03)

BayesC 0.44 (se ± 0.04) 0.35 (se ± 0.04) 0.29 (se ± 0.03)

a Analysis included 12,085 SNPs
b Analysis included 2,614 SNPs
c Analysis included 705 SNPs
d standard error

Figure 3 A Manhattan plot highlighting the association between
individual SNPs and surviving days. (B). A QQ plot showing the
relationship between the observed and expected –log(P) values
from the GWAS.

improved genetic resistance offers an additional and complemen-
tary tool to combat losses due to this disease. While traditional
family-based selective breeding is applied in sea bream, it can-
not utilise within-family genetic variation in the trait. Applying
genomic information into selective breeding schemes raises the
possibility of selecting directly for favourable alleles at major QTL
(marker-assisted selection) or incorporating all markers in the pre-
diction of breeding values (genomic selection). As such, genomics-
enabled breeding can expedite the rate of genetic gain, and can
potentially reduce the need for yearly trait recording. However, to
enable these benefits, substantial genomic resources are typically
required (e.g. a high density SNP genotyping platform), which
sea bream is currently lacking. This is likely to change in the near
future as the reference genome sequence and associated genomic
tools/data become available. In the meantime, RAD sequencing
and similar techniques can readily be applied to generate genome-
wide SNP marker datasets even in the absence of such genomic
resources (Baird et al. 2008).

High-density SNP linkage maps have been constructed for sev-
eral aquaculture species, and are useful for both QTL positioning
and reference genome assembly (Gonen et al. 2014; Palaiokostas
et al. 2013b,a, 2015b). The most recent linkage map of sea bream
consists mainly of microsatellites (Tsigenopoulos et al. 2014), lack-
ing the necessary resolution for successful implementation of
GWAS and genomic prediction. In the current study, we present
the first high-density linkage map for this species, consisting of
12,085 SNPs on 24 linkage groups, which is consistent with the
karyotype. The genetic map presented here spans 3,899 cM, while

the previous map of (Tsigenopoulos et al. 2014) has a total length
of 1769.7 cM, which may reflect the larger number of markers used
in the current study. This trend of increase in map distance with
increased marker density was observed with previous sea bass
(Dicentrarchus labrax) linkage maps (Chistiakov et al. 2005, 2008;
Palaiokostas et al. 2015b).

The estimated heritability of resistance was moderate (0.22 and
0.28 for the different models) compared to those previously re-
ported for disease resistance traits in various aquaculture species
(Odegå rd et al. 2011). Nonetheless, successful implementation
even in the case of low heritability traits in breeding programs
is still possible, as demonstrated in livestock (Heringstad et al.
2003). Also, since heritability of mortality traits are frequency de-
pendent, with maximal values reported at intermediate mortality
levels (Bishop and Woolliams 2014), the low survival rate in the
current study may have resulted in an underestimate, and analysis
of additional challenge and field data is merited.

The GWAS results pointed to a polygenic or oligogenic genetic
architecture for resistance to pasteurellosis, with no genome-wide
significant QTL identified, with the lowest P values indicative
of putative suggestive QTL on linkage groups 1 - 3, 10, 17, 20
and 21. Unfortunately the lack of an integrated linkage map for
sea bream does not allow direct comparison of the previously
described resistance QTL (Massault et al. 2010) with the current
study. Furthermore no major QTL were identified in the above
study, with the largest QTL for surviving days explaining approx-
imately 4 % of the phenotypic variance. The fact that genomic
prediction using all tested models gave similar prediction accura-
cies, a phenomenon often observed in the study of polygenic traits
(Meuwissen et al. 2001; Kizilkaya et al. 2010) seem to support the
hypothesis of polygenic resistance. Nevertheless, since the selected
priors will influence the output of the Bayesian models (Gianola
2013), interpretation of genetic architecture based on these results
should be treated with caution. Additionally, the moderate sample
size in the current study is likely to limit the statistical power to
detect small to medium size effect QTL. Further, the low mortal-
ity level precludes effective estimation of genetic parameters for
survival per se, and the genetic correlation between survival time
(days to death) and overall survival is unknown.

The results from the genomic prediction approach were encour-
aging for practical implementation of selective breeding for genetic
resistance in sea bream, with the genomic prediction models out-
performing traditional BLUP. The advantage of the genomic-based
models was retained also when only SNPs at 1cM location intervals
were used, which may be useful for reducing genotyping costs and
improving cost-effectiveness. However, due to the limited number
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of families in the current study, the training and validation sets
contain closely related animals, which will increase the accuracy
of prediction. Additional testing of genomic prediction at varying
marker densities on separate and preferably larger populations
would be required to ascertain the appropriate density for com-
mercial application of genomic selection. The benefit of genomic
prediction over a pedigree-based approach is likely to be due to
the ability to capture within-family genetic variation. In mass-
spawning species such as sea bream, in which family size and
structure is difficult to control, this approach is likely to be particu-
larly advantageous. Overall, the current study demonstrates that
SNP markers generated via 2b-RAD are effective at capturing the
genetic variation in a complex trait in a sea bream breeding pop-
ulation. This approach is likely to be useful in other species with
less-developed genomic tools, and provides further evidence that
incorporation of genomic selection is likely to result in significant
improvement in selection accuracy and genetic gain compared to
traditional family selection in aquaculture breeding.

Conclusion
2b-RAD sequencing was applied to investigate genetic resistance
to pasteurellosis in gilthead sea bream. The SNP data generated
were applied to create the first high-density linkage map for sea
bream. Only suggestive QTLs were detected, implying that resis-
tance to pasteurellosis has an oligogenic-polygenic architecture for
the studied population. Genomic prediction using the 2b-RAD
genotype data was effective, with substantial improvement in pre-
diction accuracy over the pedigree-based model. This highlights
the utility of genotyping by sequencing for genomic prediction of
disease resistance in aquaculture species, and its potential to apply
genomic selection in commercial breeding programs.
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