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ABSTRACT

Molecular dynamics simulations of small molecule permeation
through lipid membranes

by Michail Palaiokostas-Avramidis

Passive permeation through biological membranes is an important mechanism for trans-
porting molecules and regulating the cellular content. Studying and understanding passive
permeation is also extremely relevant to many industrial applications, including drug design
and nanotechnology. In vivo membranes typically consist of mixtures of lamellar and non-
lamellar lipids. Lamellar lipids are characterised by their tendency to form lamellar bilayer
phases, which are predominant in biology. Nonlamellar lipids, when isolated, instead form
non-bilayer structures such as inverse hexagonal phases. While mixed lamellar/nonlamellar
lipid membranes tend to adopt the ubiquitous bilayer structure, the presence of nonlamellar
lipids is known to have profound effects on key membrane properties, such as internal dis-
tributions of stress and elastic properties. This dissertation examines permeation through
lamellar and nonlamellar lipid membranes by utilising atomistic molecular dynamics sim-
ulations in conjunction with two different methods, the z-constraint and the z-restraint, in
order to obtain transfer free energy profiles, diffusion profiles and permeation coefficients.
An assessment of these methods is performed in search for the optimal, with the goal to
create an automated, accurate and robust permeation study framework. Part of the disserta-
tion involves the creation of the corresponding software. Furthermore, this work examines
the effect of changing the lamellar vs. nonlamellar lipid composition on the passive perme-
ation mechanism of a series of 13 small molecules and drugs. These nonlamellar lipids are
known to affect the lateral pressure distribution inside the membranes. This work investi-
gates the hypothesis that the differences in lateral pressure should increase the resistance
to permeation. The results indicate that, upon addition of nonlamellar lipids, permeation is
hindered for small molecules but is facilitated for the largest. All results are in agreement
with previous experimental and computational studies. This work represents an advance-
ment towards the development of more realistic in silico permeability assays, which may
have a substantial future impact in the area of rational drug design.
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Chapter 1
Introduction

1.1 Motivation
Drug development is a resource-intensive and time-consuming process with a very high
risk of failure. New chemical entities (NCEs) are typically studied for a decade or more
before they reach the general population. During this long period of time, a potential drug
candidate has to successfully pass both pre-clinical and clinical tests, that further involve
many phases1. This rigorous process screens an initial compound library of several millions
NCEs to just a few potential candidates that can be further examined during the clinical
trials2. On average, the cost of research and development for each drug can reach $802
million3.

The pre-clinical work, also known as the drug discovery cycle, can be distinguished into
three stages2; target selection, lead identification and lead optimisation. Initially, research
focuses on a particular disease and the corresponding interaction targets or processes, that
a drug could affect within the body. The next step is to identify chemical entities that could
potentially affect the previously found target. During that stage, by using high and ultra-
high throughput screening techniques (HTS/UHTS)4, researchers screen an initial set of a
few million substances to about 10-15, while at the same time obtain initial information
regarding pharmacokinetic properties including absorption, distribution, metabolism and
excretion (ADME)5,6. Finally, during the lead optimisation stage, by performing detailed
research for 2 to 3 years, the potential candidates are reduced further to just a few, which
can then proceed for clinical trials.

All the aforementioned stages are research-intensive and time-consuming processes that
involve in vitro, in vivo and in silico techniques. In particular the latter, with the exponential
growth of the available computational power during the last four decades, has provided
new perspectives in the drug discovery process7–9. Figure 1.1 shows the possible areas

1



Chapter 1. Introduction

than in silico techniques could be used depending on the scale of the problem (figure 1.2).
Commonly used methods include:

• molecular docking, which is usually utilised to study the binding of ligands in targets
(e.g., protein receptors)10,11,

• quantitative structure activity relationship (QSAR), which correlates the structural
properties of compounds to their biological activity,

• Monte Carlo (MC) and molecular dynamics (MD) simulations, which provide a per-
spective of the conformational changes (MC & MD) and time evolution (MD) of
biological systems on the nanometre scale.

Figure 1.1: Contribution areas of in silico methods in modern drug discovery cycle. Modi-
fied version of reference12

MD is an essential technique for the design of new drugs and in the past, research has fo-
cused on the study of proteins and interactions of proteins with ligands (proteomics). It
allows the prediction of thousands of different molecular conformations based on struc-
tural data obtained with experiments or quantum mechanics simulations13. It also allows
a visual and dynamo-kinetic representation of the binding of potential drugs to biological
targets14,15. Another emerging field that utilises MD extensively, is the study of lipid mem-
branes or the identification of the role of lipids in important biological processes. Lipid
molecules exist predominantly in biological interfaces e.g., cell membranes; thus the ma-
jority of research on the topic concentrates on the individual or collective properties of
lipids, as well as their interactions with other micro- and macro- molecules16.

Cell membranes are the predominant structures of biological systems and are vital for the
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Figure 1.2: Time and spatial scales accessible by simulation methods

existence of life17. The plasma membrane is a thin cell-surface membrane that encapsulates
the contents of the cell and exists in both prokaryotic and eukariotic cells. However, the lat-
ter have extra internal cell membranes that allow for the compartmentalisation of different
biological processes. Plasma membranes comprise mainly lipid molecules and proteins,
as well as a small percentage of carbohydrates (figure 1.3). Lipids found in plasma mem-
branes are typically phospholipids or glycolipids, which have an amphiphatic nature18. This
molecular structure leads to the so-called “hydrophobic effect”, in which the hydrophobic
part tends to minimise its contact with the aqueous environment, while the hydrophilic part
tends to maximise it. The shape of the plasma membrane is a result of the hydrophobic ef-
fect, where lipid molecules self-assemble in a bilayer structure, with the hydrophobic parts
protected in the centre and the hydrophilic parts exposed to the aqueous environment.

One of the most fundamental functions of the cell membrane is the regulation of molecules
transportation, which is of immense importance in the drug discovery cycle. The majority
of neutral-charged, hydrophobic, small molecules and drugs, permeate lipid membranes
spontaneously via a process called passive permeation, which occurs due to the compound
concentration gradient along the membrane and no carrier proteins or extra energy are re-
quired. Many parameters affect passive permeation and the identification of individual
contributions (e.g., from lipid properties, membrane properties or permeant properties) is
an active research field. Molecular dynamics as a technique, provides a sub-nanometre
magnifying glass that allows a detailed examination of the complicated transport phenom-
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Figure 1.3: An artistic representation of the plasma membrane19.

ena which cannot be currently probed by experiments due to the small thickness of the
membrane20.

Cell membranes are composed by hundreds of different types of lipid molecules and differ-
ent lipid compositions induce different phase formations and structure properties17. In the
past, studies of passive permeation focused on single lipid-type systems, however, recent
findings indicate a strong dependence of key lipid bilayer properties on lipid composi-
tion21,22. These properties have the potential to affect significantly, among other processes,
the passive permeation of molecules through the membrane. Considering that MD can
provide a detailed atomistic perspective on biological phenomena, in this work, MD simu-
lations are utilised in order to study the possible effect of lipid composition on the passive
permeation of small molecules and drugs and the prospective consequences in the drug
discovery cycle.

1.2 Hypothesis and aims
Previous studies have shown that the lateral pressure profile of a membrane changes signifi-
cantly when lipid molecules that form nonlamellar structures are mixed with lipid molecules
that form lamellar structures21,22. In particular, they observed an increase of repulsive forces
in the hydrophobic part of the bilayer when nonlamellar lipids were added. In this work
it was hypothesised that this increase in repulsive forces should lead to an increase in the
resistance to permeation trough the membrane.

The first aim of the present study was to investigate and quantify the effect of combin-
ing nonlamellar and lamellar lipids, on passive permeation of small molecules and drugs.
Specifically it investigated whether this increase of repulsive forces had the potential to
alter the passive permeation of molecules through the membrane. The examined model
membranes consisted of the lamellar DOPC and the nonlamellar DOPE lipids while 13
permeants of biological relevance were selected based on a broad range of physical proper-
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ties.

The second aim was to assess which of the two most commonly biased molecular dynamics
methods for permeation studies provided the optimal combination of speed, accuracy and
robustness. Also, part of this aim was to produce a pre-processing and post-processing
software toolbox that would allow the automation of building, managing and analysing
permeation simulations. Overall, the project aimed to build a methodological framework
for permeation studies that appeals both to the academic and non-academic communities.

1.3 Statement of novelty
Several novel contributions are made in this dissertation that originate from the study of pas-
sive permeation of small molecules and drugs through lamellar/nonlamellar DOPC:DOPE
mixtures. Although previous studies have examined the permeation through either pure
DOPC or pure DOPE membranes and a few have also measured permeation through a
mixture of both, this is the first study that examines the effect of DOPE for a large set of
molecules and attempts a connection to key membrane properties, such as the lateral pres-
sure profile. Furthermore, this is the first time that certain parameters of the methods used
to measure permeation are thoroughly investigated. The novelty claims of this study are as
follows:

• The z-restraint and the z-constraint methods were compared for their accuracy, ro-
bustness, convergence speed and computational efficiency in order to find the optimal
solution for an automated permeation study framework.

• Two methods to measure local diffusion coefficients were compared, the Hummer
method23 and the Zhu and Hummer24 method. For the latter, four different techniques
were used to compute the integral of the autocorrelation function of the z-restraint po-
sition and assessed against the previously used fitting of a double exponential func-
tion. With regards to the Zhu and Hummer method, it is the first time that is reported
in a permeation study after its publication.

• A software toolbox was built in order to perform the pre-processing, simulation man-
agement and analysis of results, with minimum effort from the user.

• Comparison between DOPC and DOPC:DOPE(1:3) membranes was made for Gibbs
free-energy, local diffusion and local resistance profiles, as well as permeation co-
efficients in order identify the effect of DOPE on permeation. The calculation of
hydrogen bond formations indicated that the lateral pressure profile is probably the
main source of permeation differences between the membranes. Also, the permeation
coefficients and their logarithm to base 10 were correlated to 5 physicochemical prop-
erties of the permeants.
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1.4 Dissertation outline
The current chapter gave a short introduction to the motivation behind this dissertation as
well as the open scientific question, the project hypothesis and the general aims of the work.
The rest of the chapters are divided as follows:

• Chapter 2: Theoretical Background. This chapter begins with a review of key con-
cepts of molecular dynamics simulations, such as the potential function, temperature
and pressure control and periodic boundary conditions. It continues with an introduc-
tion to lipid molecules, lipid membranes and their fundamental properties. Then, the
theoretical background of spontaneous passive permeation is presented along with the
most common experimental and computational methods to study it. The chapter ends
with a two-fold literature review; firstly it reports previous studies that examined the
effect of nonlamellar lipids on mechanical membrane properties and then it reports
studies that focused on permeation through various mixed-composition membranes.

• Chapter 3: Materials and Methods. In this chapter the 2 lipid molecules and 13
permeants are presented and their properties are discussed in detail. Also, the simu-
lation protocols for the reproduction of this dissertation results are provided.

• Chapter 4: MDrug: A preparation, analysis and HPC management toolbox.
This chapter describes the features of the MDrug software toolbox for the three main
operations of a permeation study; the pre-processing, the post-processing and the
simulation management.

• Chapter 5: Results and discussion. Chapter 5 presents the results of this disserta-
tion and their discussion. The chapter begins with the outcomes of the methodolog-
ical issues examined and their parametric studies. Then it presents the free-energy
profiles, the local diffusion profiles, the local resistance profiles and the permeation
coefficients in regards to the z-constraint and z-restraint methods and as a comparison
between the DOPC and DOPC:DOPE membranes. Further analysis of the z-restraint
results includes the hydrogen bond formation, correlation and regression analyses
and lateral mobility plots. The chapter ends with the discussion on the two aims of
the project, the effect of nonlamellar lipids on permeation and the best methodology
for automated studies.

In the final chapter, the key findings and conclusions of this work are summarised and based
on that, perspectives for future research are given.
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Chapter 2
Theoretical background

2.1 Molecular dynamics

2.1.1 Equation of motion

Molecular transport through the cell membrane is a microscopic phenomenon, taking place
over nanometre length scales. To identify permeation rates, experimental techniques mea-
sure the concentration difference of chemical compounds over a specific time duration. In
order to explore the biophysical mechanisms of permeation in the nano- and sub-nano-
scales, one can utilise atomistic simulations, where electrons are ignored and individual
atomic nuclei are approximated as spherical particles. The aim of such simulations is to
obtain a sufficiently large number of phase space samples, so that, through the ergodic
hypothesis, reliable macroscopic thermodynamic properties can be extracted.

The molecular dynamics method simulates the time evolution of a small number of classical
particles by solving Newton’s second law of motion, F = ma. Assuming a system of N
interacting particles, the equation can be expressed as:

Fi = mi
∂2ri

∂t2 , i = 1 . . .N (2.1)

where F is the force on each particle i, m is its mass, r is its position vector (contains the
Cartesian coordinates) and t is the time variable. The forces of the system can be computed
as the negative spatial derivative of the potential energy function V(r1, . . . , rN):

Fi = −
∂V
∂ri

, i = 1 . . .N. (2.2)
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Therefore, equation 2.1 can be rewritten as:

mi
∂2ri

∂t2 = −
∂V
∂ri

, i = 1 . . .N. (2.3)

The solution of equation 2.3 is found numerically with small increments of the time vari-
able, also known as timestep δt, by following the procedure that is shown on figure 2.1.
In order for the simulation to begin, the starting positions r and velocities v have to be
given. Afterwards and for the rest of the simulation, each timestep is separated to three
distinct sub-steps. Initially, the forces on each atom of the system are calculated based on
the potential function (equation 2.2). Then, the positions of the particles are updated based
on the numerical solution of equation 2.1 and finally, if necessary, important properties of
the system are saved (e.g., temperature, pressure, positions etc.). All the aforementioned
steps, as well as the algorithms used for this work, are explained in detail on the following
sections.

2.1.2 Potential energy functions

The total potential energy V of the system is the summation of all the interactions that the
particles of the system experience. Molecular dynamics simulations are possible because
of two important assumptions. The first is the Born-Oppenheimer approximation that sep-
arates the fast electronic motions from the slow nuclear motions, allowing the former to be
averaged out. The second is the assumption that nuclei are heavy enough so that quantum
effects are negligible. Based on these two assumptions, the potential energy of each interac-
tion can be expressed according to classical mechanics and a set of interaction parameters,
namely, the force field (FF).

The force field refers to the combination of parametric potential energy functions and pa-
rameter sets that relate chemical structure and conformation to energy, usually produced by
fitting the functions to available experimental data and thus termed empirical force fields.
Although there are currently many different force fields available and several variations of
their functional forms, in general, they commonly separate contributions into bonded and
non-bonded. The former, refer to covalent bond stretching, angle bending and torsion due
to bond rotation (dihedral angles), while the latter refer to van der Waals and electrostatic
forces. A generic expression of the functional form is:

Vtotal = Vbonded + Vnonbonded

=
(
Vbond + Vangle + Vdihedral

)
+ (Vvan der Waals + Velectrostatic)

(2.4)

however different force fields might add extra contributions and terms.

8



Chapter 2. Theoretical background

Figure 2.1: Molecular dynamics algorithm25
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2.1.2.1 The CHARMM force field

In this dissertation, one of the most commonly used force fields for simulations of biological
molecules was chosen, the “Chemistry at HARvard Molecular Mechanics” (CHARMM)26.
The potential energy function defined by CHARMM has the generic bonded and nonbonded
terms of equation 2.4, as well as a few extra bonded:

Vbonded = Vbond + Vangle + VUrey-Bradley + Vdihedral + Vimproper + VCMAP (2.5)

with the extra terms VUrey−Bradley, Vimproper and VCMAP representing angle bending due to
nonbonded van der Waals interactions between atoms 1 and 3, out-of-plane bending and
corrections for protein backbone dihedral angles, respectively. Overall, the potentials used
for the total expression of the CHARMM potential energy are harmonic, periodic, Lennard-
Jones and Coulomb and they are all presented in table 2.1. The total potential energy
function can be written as:

Vtotal =
∑
bonds

kb

(
b − b0

)2

+
∑

angles

kθ
(
θ − θ0

)2

+
∑

Urey-Bradley

kUB

(
b1−3 − b1−3,0

)2

+
∑

dihedrals

kϕ (1 + cos (nϕ − δ))

+
∑

impropers

kω
(
ω − ω0

)2

+
∑

residues

VCMAP(Φ,Ψ)

+
∑

nonbonded pairs

εi j


rmin

i j

ri j

12

− 2

rmin
i j

ri j

6 +
qiq j

4πε0ri j

(2.6)

where the superscript naught symbol
(

0
)

indicates equilibrium terms, k terms indicate force
constants, n is the multiplicity of the dihedral function, φ is the dihedral angle, δ is dihedral
phase shift, Φ and Ψ are the protein backbone dihedral angles, εi j and ri j are the geometric
mean

(
εi j =

√
εiε j

)
and arithmetic mean

(
ri j =

(
ri + r j

)
/2

)
of the Lennard-Jones parameters

of particles i and j, respectively, qiq j are the partial charges of the particles and ε0 is the
vacuum permittivity.

2.1.2.2 Cut-off radius and long-range interactions

Calculation of nonbonded interactions such as van der Waals and electrostatics is the most
computationally demanding part of an MD simulation. The reason is that, in principle,
both of these interactions exist between all particles. One approximation that helps with
the large amount of calculations is to consider only pairs of particles (pairwise interactions)
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Table 2.1: Particle interactions and potential functions.

Interactions Type Potential Function

Bond stretching Bonded Harmonic kb

(
b − b0

)2

Angle bending Bonded Harmonic kθ
(
θ − θ0

)2

Urey-Bradley Bonded Harmonic kUB

(
b1−3 − b1−3,0

)2

Dihedral Bonded Periodic kϕ (1 + cos (nϕ − δ))

Improper Bonded Harmonic kω
(
ω − ω0

)2

CMAP Bonded - Correction terms for Φ and Ψ

van der Waals Nonbonded Lennard-Jones εi j

[(
rmin

i j

ri j

)12
− 2

(
rmin

i j

ri j

)6
]

Electrostatic Nonbonded Coulomb
(
qiq j

) (
4πε0ri j

)−1

Equilibrium terms. b0:bonds, θ0:angles, b1−3,0:Urey-Bradley, n:dihedral multiplicity,
δ:dihedral phase, ω0:impropers
Force constants. kb:bonds, kθ:angles, kUB:Urey-Bradley, kϕ:dihedrals, kω:impropers
Other terms. εi j:Lennard-Jones well-depth, ri j:Lennard-Jones radius, ε0:vacuum
permittivity

and thus for N particles, NxN calculations are required. However, this is still a considerably
large amount of computations. Therefore, a second approximation is the construction of a
neighbour list around each particle and the use of a cut-off radius, beyond which interactions
are not computed.

To construct the neighbour list, all particles within a specific radius of each particle (the
neighbour list cut-off), must be found. Then, the particles that have exclusively bonded
interaction are discarded. In the end, the neighbour list includes only pairs of particles
with nonbonded interactions. To enhance computational efficiency, many MD solvers (e.g.,
GROMACS), do not update the neighbour list every timestep but every 20, 40 or even more,
depending on the simulated system.

The application of a cut-off radius for van der Waals forces (and the respective Lennard-
Jones potential) is a reasonable approximation because they decay rapidly as the distance
grows (figure 2.2). However, the approximation is not valid for electrostatics, which de-
cay much slower and have a longer effective range. To alleviate the problem, electrostatics
are divided in short-range and long-range. The former are computed based on a cut-off

radius similar to the one used for van der Waals forces. For the latter, when periodic bound-
ary conditions are used (see section 2.1.5), a special technique called Ewald summation27

can be utilised. With this technique, the long-range electrostatics are represented by a finite
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Fourier series which is solved in the reciprocal space. Most modern MD solvers use the Par-
ticle Mesh Ewald (PME) algorithm28 that uses fast Fourier transformations and distributes
system partial charges into a grid.

Figure 2.2: The Lennard-Jones potential energy function29

The use of cut-offs introduces a significant issue on the limits of the cut-off radii. Particles
close to them, by moving inside or outside over simulation steps, introduce discontinuities
in the potential energy function which affect the stability of the simulation. To prevent
these abrupt changes in the potential energy, it is customary for force fields to alter their
functional forms either by using a switching or shifting function. In the first case, two
cut-offs are used; until the inner cut-off the functional form is the original, while between
the inner and outer cut-offs, a sigmoidal function “switches” the potential energy to zero
(in CHARMM FF, typically the two cut-offs are 1.0 nm and 1.2 nm). In the second case,
the functional form is altered entirely in order to decay continuously to zero in the cut-off

radius.

2.1.3 Energy minimisation and initial conditions

Usually, before a molecular dynamics simulation, all particles undergo a process called
energy minimisation, where, the starting configuration, according to a minimal energy cri-
terion, is rearranged so that the potential energy function finds a local minimum. This pro-
cess increases the stability of the upcoming MD simulation, especially in the initial phase,
when particle overlaps and far-from-equilibrium bonds, angles or dihedrals could result in
extreme forces that the integrator could not handle. A popular algorithm for energy min-
imisation is the steepest descent25; in every iteration of the minimisation, a step is taken
towards the negative gradient of the potential (the direction of the total force), until a local
minimum is reached.
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In order for a simulation to begin, several parameters should be defined, such as, the size of
simulation box, as well as, the initial coordinates and velocities of the particles. The initial
velocities, if unknown, can be generated according to the Maxwell-Boltzmann distribution
(figure 2.3) for any temperature T:

p(ui) =

√
mi

2πkBT
exp

[
−

miu2
i

2kBT

]
(2.7)

where p(ui) is the probability density as a function of speed u of any particle i, mi is the
particle mass and kB is Boltzmann’s constant.

Figure 2.3: Maxwell-Boltzmann velocity distribution30. The symbol # stands for “Number
of”.

2.1.4 Numerical solution

In every timestep, once the total force on each particle is computed according to equa-
tion 2.2, the MD integrator transforms the forces into conformational changes according
to equation 2.1 via numerical integration. In order to solve the differential equations nu-
merically, the finite difference method is used. Several algorithms have been proposed as
integrators31–34. One of the most commonly used algorithms is the Verlet34; considering
that the positions r, velocities v and accelerations a are known in a particular time t, the
positions in the next timestep t + δt can be computed by a Taylor’s expansion as:

r(t + δt) = r(t) + v(t)δt +
1
2
a(t)(δt)2 +

1
6
b(t)(δt)3 + . . . (2.8)
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while the positions r for the previous timestep can be expressed as:

r(t − δt) = r(t) − v(t)δt +
1
2
a(t)(δt)2 −

1
6
b(t)(δt)3 + . . . (2.9)

Addition of equations 2.8 and 2.9 gives:

r(t + δt) = 2r(t) − r(t − δt) + a(t)(δt)2 (2.10)

where a can be computed from the potential energy based on equation 2.3 and only for the
initial timestep, the r(t − δt) term can be approximated as:

r(−δt) = r(0) − v(0)δt (2.11)

The main disadvantage of the Verlet algorithm is that velocities do not explicitly appear
in the equation and thus direct control of the temperature of the particles is impossible.
To circumvent this issue, many MD integrators (such as GROMACS) use the leap-frog
algorithm35, where the positions in the next timestep can be computed by the velocity at
half timestep:

r(t + δt) = r(t) + v(t +
δt
2

)δt (2.12)

v(t +
δt
2

) = v(t −
δt
2

) + a(t)δt (2.13)

Then at each full timestep δt, the velocity is calculated as:

v(t) =
1
2

(v(t +
1
2
δt) + v(t −

1
2
δt)) (2.14)

Although the leap frog algorithm introduces the velocity component in the numerical equa-
tion of motion, it is still out-of sync and an extra calculation of higher order error is required
on each timestep (eq. 2.14). To further tackle this issue, the velocity-Verlet algorithm36 is
used which allows a synchronised time progression of all properties (r,v,a) by first com-
puting the new position r(t + δt) as:

r(t + δt) = r(t) + v(t)δt +
1
2
a(t)(δt)2 (2.15)

then the new acceleration is computed based on equation 2.3 for t + δt as:

a(t + δt) = −
1
m

∂V
∂r(t + δt)

(2.16)

and finally:

v(t + δt) = v(t) +
1
2

(a(t) + a(t + δt)) δt. (2.17)

Timestep δt is one of the most important parameters of the simulation protocol as it af-
fects the accuracy of the results, as well as the robustness of the simulation. The criterion
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for its selection is related to the fastest processes of the examined system. These are typ-
ically the stretching vibrations of covalent bonds with hydrogen atoms37, which however,
have a small effect on the calculated properties of the system. Therefore, their length is
usually constrained to their equilibrium distance during the simulation, allowing for larger
timesteps and thus simulations of larger timescales for the same computational cost. con-
straint algorithms work by evaluating the proper length of bonds after unrestrained move-
ments. Three commonly used constraint algorithms are the SHAKE38, RATTLE39 and
LINCS40,41, with the first two using an iterative process to determine the correct constraint
forces for Verlet and velocity Verlet integrators respectively, while LINCS only has two
iterations, is faster and more robust, but has more limitations in comparison to the other
two25.

2.1.5 Boundary conditions

Due to the small number of particles utilised in a molecular dynamics simulation (compared
to Avogadro’s number), boundary conditions of solid walls can introduce significant sur-
face effects that will not represent correctly bulk thermodynamic properties. Therefore, it is
necessary in many MD simulations to use periodic boundary conditions (PBC), whereby an
infinite number of replicas surround the original system. Figure 2.4 shows a 2D represen-
tation of periodic boundary conditions, with the original system being in the centre. Each
particle has infinite surrounding copies and when it moves out of the simulation domain
from one side, its copy moves in from the opposite side.

As it was mentioned in section 2.1.2, the computation of the potential energy for all par-
ticles is a prerequisite for the prediction of system’s evolution. Furthermore, calculating
nonbonded interactions is the most computationally demanding part of MD. Since infinite
copies of particles exist, in theory, infinite interactions should be taken into account. This is
practically impossible and thus the minimum image convention is used, in which, each par-
ticle interacts only with the nearest image of any other particle (figure 2.4). However, even
with this convention, the number of pairwise interactions is very high, therefore the cut-off

radius is further introduced to increase computational efficiency with minimum effect on
physical properties calculation (see figure 2.4 and also section 2.1.2.2).

2.1.6 Temperature and pressure control

2.1.6.1 Ensembles

Molecular dynamics simulations generate ensembles of constant number of particles N,
volume V and energy E (NVE) with fluctuating temperature T and pressure P. Most exper-
iments, however, are performed under controlled temperature and/or pressure, therefore it is
important to be able to reproduce the respective ensembles, canonical (NVT) or isothermal-
isobaric (NPT). In order to achieve this, the velocities or the positions of the particles are
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Figure 2.4: Periodic boundary conditions of the central square, the minimum image con-
vention (the square around particle 1, dashed line) and the potential energy cut-off radius
(the circle around particle 1, dashed line), for a 2D system35.

modified by thermostats and/or barostats. The aforementioned ensembles are presented in
figure 2.5

2.1.6.2 Thermostats

The temperature of the system is directly related to its total kinetic energy, thus in order to
control it during an MD simulation, it is necessary to couple it to an external “heat bath” of
fixed temperature T0.

2.1.6.2.1 Berendsen thermostat

The Berendsen42 is one of the most commonly used thermostats, due to its efficiency. It
allows the weak coupling of the heat bath to the system through first-order kinetics by
correcting every deviation of the system from the target temperature according to25:

dT
dt

=
T0 − T
τ

(2.18)

where τ is a time constant equal to:

τ =
2CVτT

Nd f kB
(2.19)
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Figure 2.5: Thermodynamic ensembles commonly produced by MD simulations. The iso-
lated constant-energy NVE, the constant volume and temperature NVT and the constant
pressure and temperature NPT.

with CV being the total heat capacity of the system, τT the temperature coupling time con-
stant, Nd f are the number of degrees of freedom of the system and kB is Boltzmann’s con-
stant. In general, if τT is taken larger than 0.5 ps, the dynamics of the system are not signif-
icantly affected by the coupling and the temperature decays exponentially to the reference
value. However, because the kinetic energy fluctuations are suppressed, the Berendsen
thermostat cannot produce the correct canonical ensemble.

2.1.6.2.2 Nosè-Hoover thermostat

To circumvent the inability of the Berendsen thermostat to produce the canonical ensemble,
the extended-ensemble approach was proposed by Nosè43 and Hoover44, by introducing in
the equations of motion a term representing a “thermal reservoir”, as well as a frictional
term ξ 25:

d2ri

dt2 =
Fi

mi
−

pξ
Q

dri

dt
(2.20)

with ξ being a quantity with its own momentum pξ and equation of motion. The time
derivative of pξ is computed from the difference between current temperature T and the
reference temperature T0:

dpξ
dt

= T − T0 (2.21)

where Q is the mass parameter of the thermal reservoir and together with T0 define the
strength of the coupling (similar to τ in the Berendsen). Although Nosè-Hoover thermo-
stat enables canonical ensemble simulations, the relaxation of the temperature takes much
longer and has an oscillatory behaviour.
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2.1.6.2.3 Stochastic velocity rescaling thermostat

Another weak coupling thermostat, based on the Berendsen, is the stochastic velocity
rescaling proposed by Bussi et al.45, where the addition of a stochastic term gives a cor-
rect kinetic energy distribution. The correction term of the kinetic energy distribution is:

dK = (K0 − K)
δt
τT

+ 2

√
KK0

N f

dW
√
τT

(2.22)

where K is the kinetic energy, τT the temperature coupling time constant defined in equa-
tion 2.19, Nd f are the number of degrees of freedom of the system, δt is the timestep and
dW is a Wiener process. The great advantage of this method is that it exponentially damp-
ens temperature deviations, without the oscillations of the Nose-Hoover method and also,
produces the correct canonical ensemble.

2.1.6.3 Barostats

Similar to thermostats, techniques that couple the system to a “pressure bath” have also
been developed.

2.1.6.3.1 Berendsen barostat

Berendsen barostat42 has a similar formulation to the thermostat. Instant pressure P is
weakly coupled to the reference pressure P0 with first order kinetics by rescaling the coor-
dinates and box vectors every npc steps, according to a scaling matrix µ:

dP
dt

=
P0 − P
τp

(2.23)

µi j = δi j −
npcδt
3τp

βi j

{
P0i j − Pi j(t)

}
(2.24)

where δi j is Dirac’s delta and βi j is the isothermal compressibility of the system (for water
at 1 atm and 300 K, β=4.6 × 10−10 Pa−1). The main disadvantage of the Berendsen barostat
is that it does not reproduce correctly the isothermal-isobaric NPT ensemble.

2.1.6.3.2 Parrinello-Rahman barostat

This technique was developed by Parrinello and Rahman46 and is the pressure analogous
of Nosè-Hoover thermostat. The equation of motion changes similarly:

d2ri

dt2 =
Fi

mi
−M

dri

dt
(2.25)
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whereM is:
M = b−1

[
b

db′

dt
+

db
dt

]
b′−1. (2.26)

The quantity b is a matrix representing the simulation box vectors and can be computed
according to:

d2b

dt2 = VW −1b′−1
(
P − Pre f

)
(2.27)

where V is the volume of the box, W is a matrix parameter that determines coupling
strength and P and Pre f refer to the instant and reference pressure matrices, respectively.
The prime notation indicates extended system variables. In the molecular dynamics soft-
ware GROMACS, the inverse ofW is defined as:

(
W −1

)
i j

=
4π2βi j

3τ2
pL

(2.28)

where β is the isothermal compressibility, τp is the pressure time constant and L is the
largest box matrix element. The Parrinello-Rahman barostat has the advantage of returning
the correct NPT ensemble, however, it takes much longer to reach the reference pressure and
in case that the system is too far from equilibrium, it might lead to oscillatory behaviour.
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2.2 Biological membranes

2.2.1 Lipid molecules

All living organisms are composed of cells, which are complex structures composed of four
different organic macromolecules: polysaccharides, proteins, nucleic acids and lipids17.
Cells are encapsulated by thin membranes, also known as plasma membranes, which among
other functions, act as barriers and regulators of molecules’ transportation between the cell
and its environment. The backbone of the plasma membrane is the lipid bilayer, which
is composed of hundreds of different lipid molecules that can be categorised primarily in
three types; phospholipids, glycolipids and cholesterol, all characterised by an amphiphatic
nature due to a polar and a non polar part. Cholesterol is a steroid and therefore structurally
different from phospholipids and glycolipids. It has the four carbon rings of a steroid struc-
ture, as well as an extra short hydrocarbon chain and a hydroxylic group. It exists in all
plasma membranes in various concentrations and its biological importance is paramount;
cholesterol induces lipid domains47, increases the thickness of lipid bilayers48 and stabilises
their structure ensuring a liquid-ordered phase49.

Glycolipids are molecules that have a carbohydrate attached in the polar part, which pro-
trudes outside the cell, in the aqueous environment18. Glycolipids are important for main-
taining membrane stability, as well as for providing recognition sites for chemicals50.

Phospholipids are the most common lipid molecules in biological membranes18 and take
their name from a phosphate group (figure 2.6a) linked to the backbone, either a sphingosine
or glycerol, as a phosphate ester. Glycerophospholipids are the main components of lipid
bilayers and the focus of this work. The phosphate group forms another phosphate ester
link with an amino alcohol, comprising an amine and a hydroxyl group. There are several
types of amino alcohols and in this work we examine the most commonly encountered,
choline and ethanolamine. They both have a similar chemical structure but the former has
methyl groups linked to the amine group instead of simple hydrogens like the latter (figures
2.6b and 2.6c). The amino alcohol in conjunction with the phosphate group form the polar
part of the lipid molecule.
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Figure 2.6: Commonly found moieties of the polar part of phospholipids in the plasma
membrane.

The glycerol backbone, apart from the phosphate ester link, has two more ester links with
fatty acids, comprising the non polar part of glycerophospholipids (figure 2.7). The fatty

20



Chapter 2. Theoretical background

acids are long hydrocarbons composed of many methanediyl groups ( – CH2 – ), a methyl
group ( – CH3) attached in one end and a carboxylic acid ( – COOH) attached to other. They
can can have a large variety of lengths, typically between 14 to 22 carbon atoms and one or
more double bonds. Fatty acids with no double bonds are called saturated, while with one
or more double bond are called unsaturated. The double bond can be cis or trans depending
on whether it creates a kink in the hydrocarbon chain or not, respectively.
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(a) Glycerol

HO C

O

(CH2)N−2CH3

(b) Fatty acid structure with N number of carbon atoms

Figure 2.7: The backbone and non polar part of glycerophospholipids in the plasma mem-
brane.

Based on the above, a phospholipid will have a structure similar to the one depicted in figure
2.8. Due to this polar/apolar coexistence, when phospholipids are found in an aqueous
environment, they do not dissolve but instead self-assemble into lipid aggregates. This
phenomenon is called the hydrophobic effect which is apparent in all mixtures of water
and oils and is driven by entropy. Water molecules can form up to 4 hydrogen bonds with
neighbouring water molecules, resulting in a highly dynamic, loose network of hydrogen
bonds that is stabilised by maximum system∗ entropy17. Oils are mainly composed of
hydrocarbon chains, which despite the fact that they can have dipole-dipole interactions
with water molecules, they are incapable of forming hydrogen bonds. Therefore, when a
non polar molecule is dispersed into water molecules, the latter reorient themselves around
it, in a structured solvation shell, in order to maintain as much as possible, the previous
dynamic hydrogen bond network. Also, the mobility of the surrounding water molecules is
restricted and the entropy of the system is reduced, making the whole process unfavourable,
as it can also be seen by Gibbs free-energy ∆G = ∆H − T∆S , where H is the enthalpy, T

is the temperature and S is the entropy. Therefore, in order to minimise this disruptive
behaviour, the non polar molecules aggregate and reduce the available surface that is in
contact with water51.
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Figure 2.8: The polar(blue)/apolar(green) structure of a typical phospholipid, the 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).

∗System refers to the cooperative hydrogen bonds network of all water molecules
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As it was mentioned already, lipid molecules vary widely in terms of size, chemical struc-
ture or polarity. Due to many possible corresponding compositional differences, lipid as-
semblies can display a variety of different physical properties and structures17 (figure 2.9).
One of the driving factors governing the form of the lipid aggregate is the lipid molecule
shape17,52, defined according to a packing parameter P:

P =
v
al

(2.29)

where a is the cross-sectional area of the polar region and v and l are the volume and length
of the non polar region. For cylindrically-shaped lipids, where P ≈ 1, lipids typically self-
assemble into lamellar bilayer structures, where the hydrophilic heads are submerged into
the aqueous environment and the hydrophobic tails are isolated in the centre (figure 2.9d).
Under standard thermodynamic conditions, as lipids’ shapes deviate from the cylindrical,
they tend to form non lamellar phases such as the conically shaped lipids (smaller polar
than apolar part), which form inverse hexagonal structures with long lipid tubes filled with
water molecules53 (figure 2.9b). The lamellar bilayer form is the most commonly found in
biological systems and is the predominant form of the plasma membrane.

(a) Inverted micelles (b) Inverted hexagonal HII (c) Cubic

(d) Lamellar bilayer (e) Hexagonal HI (f) Micelles

Figure 2.9: Various lipid aggregates forms in aqueous environment17. Top left refers to
lipids of packing parameter P > 1, the lamellar bilayer has P ≈ 1 and the bottom right
micelle refers to P < 1/3.

2.2.2 Lipid bilayers

2.2.2.1 Phase behaviour

When lipid molecules self-assemble into aggregates of any form, they can undergo two
different kinds of phase transitions. The first type of transition is related to the aggregate
morphology, in which by changing various parameters such as the lipid hydration, aggre-
gates can transform between the structures presented in figure 2.9. The second transition
type is internal for each different form, in which properties change between the solid crys-
talline, the ordered liquid-crystalline (gel) phase, the disordered liquid-crystalline (smectic)
phase and liquid phase. In the smectic liquid-crystalline phase, which is the form lipid bi-
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layers adopt in biological applications under physiological conditions, lipid molecules are
ordered in separate planes similar to solid crystals and also retain an orientation. However,
within each plane they are disordered and monolayers exhibit liquid phase characteristics
(figure 2.10b).

Different lipids undergo all or parts of the aforementioned transitions. On one hand, medium-
chainlength phosphatidylcholines experience transitions in consecutive lamellar phases by
increasing the temperature54:

Lc Lβ′ Pβ′ Lα (2.30)

where Lc is the solid crystalline phase (figure 2.10a), Lβ′ is the gel phase with tilted lipid
chains, Pβ′ is the rippled gel phase and finally Lα is the liquid-disordered phase (figure
2.10b). On the other hand, phosphatidylethanolamines do not display a rippled gel phase
and their gel phase Lβ does not have tilted chains:

Lc Lβ Lα. (2.31)

(a) Crystalline (b) Smectic l.c. (c) Nematic l.c. (d) Liquid

Figure 2.10: Different phases of elongated model molecule aggregates17. Lipid bilayers of
biologically relevant systems, exist in a smectic liquid crystalline meso-phase.

2.2.2.2 Structure

The structure of the plasma membrane has been interpreted and revised numerous times
during the 20th century; from the simple lipid bilayer of Gorter and Grendel55 in 1925 to
the popular fluid mosaic model of Singer and Nicolson56 in 1972, to more modern complex
and sophisticated models57–59. Despite the plethora of interpretations, the key building
block of the membrane remains the lipid bilayer.

The actual characterisation of the real structure of the lipid bilayer in non trivial, as in the
biologically relevant La phase, the hydrocarbon chains are conformationally disordered.
Consequently, there is not a single representative correct atomic description of the struc-
ture but rather a statistical distribution function that incorporates the fluctuations of fully
hydrated liquid-disordered bilayers60. Experiments, such as X-ray diffraction are usually
done on multilamellar arrays of lipid bilayers (figure 2.11) and can yield density profiles
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which show the probability distribution of different chemical moieties along the bilayer
thickness (figure 2.12b). Similar density profiles can also be produced with molecular dy-
namics simulations which also provide an atomistic representation of the bilayer. When the
two density profiles are qualitatively and quantitatively similar, an accurate depiction of the
bilayer structure can be obtained (figure 2.12a).

Figure 2.11: Multilamellar lipid membrane stacks of thickness d, commonly used in exper-
imental studies61.

From figure 2.12 it is clear that lipid membranes are heterogeneous structures that can be
separated in a few different distinct regions according to the density of water and the chem-
ical moieties of lipid molecules60,62–64. The first region comprises the lipid headgroups
and the water molecules that hydrate them. The second region is the polar/apolar interface
where the polar water molecules come into contact with the apolar lipid chains and due to
the hydrophobic effect, give rise to the minimisation of surface and the forming of the inter-
face. Also this is the region where the headgroups are predominantly positioned. Finally,
the third region includes the lipid chains which can be separated in the high order part, close
to the interface and the low-order part close to the bilayer centre.

Apart from the electron density profile presented above, there are several other physical
properties that allow the quantitative definition of a lipid bilayer structure. Using the den-
sity profile one can identify the bilayer thickness as the distance between the two phosphate
group peaks, namely the head-head thickness dHH obtained both experimentally and com-
putationally. More details on the available techniques for the measurement of dHH, as well
as the challenges on the agreement of results between them are presented on a recent review
written by Nagle in 201364.

The average area and volume per lipid are also commonly used properties for the under-
standing of the bilayer structure. In simulations, their computation is trivial and is based
on readily available variables of the simulation box22,65. In particular, the average area per
lipid AL can be computed as

AL =
Axy

NL
(2.32)
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(a) DOPC bilayer

(b) The density profile of the chemical components of DOPC

Figure 2.12: Atomistic representation of a 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) bilayer from a molecular dynamics simulation and a density profile of DOPC ob-
tained from experiments17. Water molecules are represented with transparent dark blue,
carbon atoms with cyan, oxygen atoms with red, phosphorus atoms with gold and nitrogen
atoms with blue.
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where Axy is the total area of the simulation box on the xy plane (parallel to the polar/apolar
interface) and NL is the number of lipid molecules per leaflet. While this method has been
found to underestimate the real area per lipid because of undulations, in practice the cal-
culated error is negligible for less than 1000 lipid molecules per bilayer66,67. The average
volume per lipid VL is similarly computed as:

VL =
Vbox − Vwater

NL
(2.33)

where Vbox is the volume of the simulation box and Vwater is the total volume of water
molecules. Experimentally, both AL and VL require more sophisticated processes to be
measured and several techniques have been developed, presented in detail in a review by
Nagle and Tristam-Nagle60.

Furthermore, examination of the acyl chains can also provide valuable insight on the struc-
ture of the bilayer core. One commonly used method involves the measurement of the av-
erage orientation of the carbon-deuterium bonds, namely deuterium order parameter S CD,
which indicates the overall anisotropy of lipid chains. It can be measured both experimen-
tally through nuclear magnetic resonance60,61,63 (NMR) or through MD simulations25,68,
as:

S CD =
1
2
〈3 cos2 θi − 1〉 (2.34)

where θi is the angle between the C-D vector and axis normal to bilayer surface. The
angular brackets represent an ensemble average.

Finally, an important open question regarding the structure of bilayers is the formation
of domains of same lipids69,70. Experimentally, identifying any lateral organisation that
would indicate the existence of a domain has been a challenging task with controversial
results until very recently71. Computationally, this can be done with a nearest neighbour
analysis65,68 where the fraction fX−X of each lipid type X can be computed by:

fX−X =
NX

N
(2.35)

where NX is the number of nearest lipid type X neighbours and N is the total number of
nearest neighbours (suggested as 4 by de Vries et al.68).

2.2.2.3 Lateral pressure profile

Lamellar lipid bilayers in mechanical equilibrium are by definition, stress free. However,
internally are very inhomogeneous structures with an anisotropic distribution of stresses
that vary as a function of depth within the membrane but also compensate each other in
magnitude (figure 2.13). If the interactions between the individual monolayers’ terminal
methyl groups are neglected as relatively small, the rest of the stresses can be decom-
posed to three different force contributions, a repulsive, an attractive and a mixed repul-
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sive/attractive (depending on the lipids) (figure 2.13a). Repulsive forces produce positive
lateral pressure contributions, while attractive forces produce negative (figure 2.13b).

(a) Pressure contributors (b) Pressure profile

Figure 2.13: The lateral pressure profile of a lipid membrane17. On the left are shown the
forces that contribute on the pressure profile and on the right are shown the positive and
negative lateral stresses πn as a function of bilayer depth z.

In the polar part of the bilayer, depending on the lipid headgroups, there can be repulsive
forces due to charges or steric and hydrational effects or attractive forces due to enhanced
hydrogen bonds formation between them72. In the hydrophobic/hydrophilic interface, there
are strong attractive forces, induced by the hydrophobic effect, where the system entropy
drives a minimisation of the interface area. Finally, along the hydrophobic region of the
bilayer, there are more repulsive forces due to the thermal fluctuations and the conforma-
tional entropy of the hydrocarbon chains. Overall, the tension-free bilayer has a mechanical
equilibrium expressed as73:

πhydrophobic effect = πsteric

(
A0

L

)
+ πhydration

(
A0

L

)
(2.36)

where A0
L is the equilibrium area per lipid and πi are the lateral pressure contributions due

to the hydrophobic effect πhydrophobic effect, the inter- and intra- molecular interactions πsteric

and the headgroup hydration interactions πhydration.

The lateral pressure profile Π(z) incorporates all the interactions that exist in the membrane
and thus has been described as the most fundamental membrane property17. It is affected
by the lipid composition22,74–79 or alcohols in large concentrations80–82 and can have a sig-
nificant impact on phase transition83,84, water penetration85 and drug transport86,87, anaes-
thesia88–91 and functioning of proteins92–98.

Quantitative measurements of the lateral pressure profile have been very difficult to perform
experimentally, because the probing of such a thin, flexible structure introduces stresses that
make measurements void. In the past, pyrene enriched PC lipids such as dipyrenylphos-
phatidylcholine (dipyPC) have been used to obtain qualitative lateral pressure profiles by
relating the excimer/monomer fluorescence ratio to the localised pressure of the pyrene
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moieties72,85,99. However, a more recent molecular dynamics study by Fraňová et al.100

indicated that the lateral pressure profile was not the dominant factor of the fluorescence
ratio. Therefore, at the moment, quantitative lateral pressure profiles can be obtained only
by analytical models101 or molecular dynamics simulations22. For the latter, the simulation
region is separated along the z direction in different slabs that are parallel to the bilayer
surface. The lateral pressure profile can be then defined as102:

Π(z) =
Pxx(z) + Pyy(z)

2
− Pzz(z) (2.37)

where Pxx, Pyy and Pzz are the diagonal elements of the pressure tensor in each slab. Typ-
ically, lipid bilayers are simulated with planar symmetry for pressure and thus Pxx(z) =

Pyy(z), while Pzz is always constant for all slabs and equal to the external pressure imposed
to the system. Therefore, to compute the pressure profile only the pressure contributions in
one of the lateral directions are needed. There are two commonly used methods for the cal-
culation of the pressure contributions per slab, the Irving-Kirkwood103 and the Harasima104,
that are explained in detail by Ollila and Vattualainen102.

2.2.2.4 Elastic properties

Biologically relevant lipid membranes are fluid and are susceptible to two elastic deforma-
tions, stretching and bending17 (figure 2.14). The stretching deformation can be defined by
the energy that is required to stretch a surface of area A0 in order to produce an area change
∆A, according to:

Estretch =
1
2
κA

(
∆A
A0

)2

(2.38)

where κA is the area compressibility modulus.

(a) Stretching (b) Bending

Figure 2.14: Elastic deformations of fluid membranes17.

The elastic bending of a generic surface with zero thickness can be defined by the energy
per unit area that is required to bend an element of area dA, as105:

dEbending =

[
1
2
κbH2

c + κGG
]

dA (2.39)

where κb and κG are the bending modulus and Gaussian curvature modulus, respectively.
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The term Hc is the mean curvature of the surface defined as:

Hc =
c1 + c2

2
(2.40)

and the term Gc is the Gaussian curvature of the surface defined as:

Gc = c1 c2 (2.41)

where c1 = 1/R1 and c2 = 1/R2 are the surface principal curvatures of radii R1 and R2,
respectively.

Equation 2.39 refers to a surface of zero thickness. However, lipid bilayers comprise two
monolayers which have a spontaneous curvature depending on the lipids’ shape (section
2.2.1), which in turn is an indication of where the interfacial tension balances, the head-
groups or the chains106. In most physiological conditions, monolayers have a spontaneous
curvature which leads to a bilayer with an intrinsic tendency to deform even when no exter-
nal force is applied. In order to accommodate this extra curvature term, the bending energy
per area of the monolayer becomes:

dEbending =

[
1
2
κb (c1 + c2 − 2c0)2 + κG c,c2

]
dA (2.42)

where c0 is the spontaneous curvature of the monolayer. By convention spontaneous curva-
ture is negative when the membrane bends towards the exterior and positive when it bends
towards the interior (figure 2.15).

Figure 2.15: Spontaneous curvature of monolayers and bilayers. From left to right: nega-
tive, zero and positive curvature17.

It is clear that when a monolayer has an intrinsic curvature but is forced to stay flat inside
the bilayer, there is a stored elastic energy in the system equal to 2κbc2

0 which is the case for
the lamellar lipid bilayers of biological importance72. This stored elastic energy creates a
lateral torque tension τL in the monolayer that can be computed by the first moment of the
lateral pressure profile Π(z) and can be directly related to the product of bending modulus
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and spontaneous curvature106:

τL =

∫
z Π(z)dz = −κbc0. (2.43)

If both the monolayers are symmetrical in the bilayer, the torque tension will be zero. The
second moment of the lateral pressure profile, however, will not necessarily be zero and
will equal to the Gaussian modulus:

κG =

∫
z2 Π(z)dz. (2.44)
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2.3 Spontaneous passive permeation

2.3.1 Physical model of passive permeation

Permeation phenomena are crucial for the existence of life. Cells during their lifetime de-
pend on the external and internal membranes, to compartmentalise biological components
and processes. There are three main mechanisms of molecule transportation through mem-
branes; passive, facilitated and active. Passive permeation is the dominant mechanism for
the majority of neutral small molecules or drugs107 and is driven by the concentration gra-
dient of the substance across the membrane (figure 2.16). Facilitated permeation is also
driven by the concentration gradient but it also requires a carrier protein to occur. Both
passive and facilitated permeation do not require energy. Finally, active permeation, re-
quires not only a carrier protein but also energy because it occurs against the concentration
gradient.

Figure 2.16: Passive permeation of a substance over time108.

This project focuses on passive permeation since it is the predominant transportation mech-
anism for small molecules and drugs109. Fick’s law of diffusion predicts the transport of a
substance along a concentration gradient of a membrane as110:

J = PA (Cin −Cout) (2.45)

where J is the transport flux (mol s−1), (Cin −Cout) is the concentration gradient across the
membrane, A is the total surface of the membrane (cm2) and P is the permeability coefficient
(cm s−1).

Meyer and Overton111,112 correlated the permeability of a molecule through a lipid bilayer to
its octanol-water partition coefficient logPoct/water. The latter is an indication of the solubility
preference of the solute between a phase of octanol and a phase of water and it is defined as
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the ratio of concentrations between the two phases. Based on this observation by Meyer and
Overton, the bulk solubility-diffusion model of permeability was proposed113, in which the
membrane was considered a homogeneous “oily” bulk body. The permeability P through
that bulk body could then be predicted by:

P =
K D

h
(2.46)

where K is the bulk oil/water partition coefficient and D is the diffusion coefficient of the
solute, inside the membrane of thickness h.

The idea of a homogeneous hydrophobic bulk phase however was not an adequate repre-
sentation of a complex mixture of molecules that comprise both polar and apolar moieties,
as well as other unique structural characteristics. Therefore, the inhomogeneous solubility-
diffusion model was proposed by Diamond et al.114, according to which the permeation P

of a solute through a membrane can be predicted from:

1
P

=

∫ z2

z1
R(z)dz =

∫ z2

z1

1
K(z)D(z)

dz (2.47)

where z is the position normal to the bilayer surface with z1 and z2 representing the bulk
water regions on the two sides of the membrane. Also, R(z) is the local resistance to perme-
ation, D(z) is the local diffusion coefficient of the solute and K(z) is the partition coefficient
between the water phase and the position z inside the membrane.

2.3.2 Experimental methods to compute permeation coefficients

As it can be seen from equation 2.47, permeation is a property that depends on the solute
partitioning and the diffusion of the solute inside the membrane. Experimentally there are
no methods to measure the two components explicitly. In particular, experiments can only
measure the partition coefficients for the most favourable partition positions of a solute
inside the membrane. Also, it is close to impossible to isolate the diffusion coefficient
component for the normal to bilayer surface direction110.

Despite the aforementioned limitations, experiments allow the measurement of the overall
permeation coefficient through the application of Fick’s law (equation 2.45). The reported
experimental measurements however, can often vary by orders of magnitude for the same
permeant, depending on the conditions, instruments and methods used by each labora-
tory115,116. It it therefore common to rely on the relative permeation predictions between
solutes rather than the absolute values20.
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2.3.2.1 Black lipid membranes - BLM

One of the first experimental methods used to measure permeability was the “painted”
lipid bilayers, also known as the black lipid membranes113,117–119 (BLM). In this method, a
hydrophobic material, usually Teflon, is used to partition a chamber filled with a solvent.
A sub-millimetre diameter aperture is opened in the Teflon sheet, which is coated with a
mixture of decane and squalene. Then it is further coated with lipid molecules, forming a
lipid bilayer in the middle of the hole (figure 2.17). One part of the chamber is then injected
with the molecule to be examined and after an incubation time, the concentration difference
between the donor and acceptor chamber is measured.

The apparent permeation coefficient is computed according to117:

P =
dCreceiver

dt
·

Vchamber

A Cdonor
(2.48)

where Vchamber is the volume of water in each chamber, Creceiver is the concentration of the
molecule in the receiver chamber, Cdonor is the concentration of the molecule in the donor
chamber and A is the average bilayer surface. This method has several disadvantages such
as residual apolar solvent trapped between the two bilayer leaflets, reduced stability and
limited lifetime.

Figure 2.17: Schematic of a typical black lipid membrane apparatus117.

2.3.2.2 Lipid vesicles

An alternative technique which was less popular than BLM, involved the measurement
of molecular concentrations across large unilamellar lipid vesicles115,120,121. The vesicles
were lipid bilayers that formed a spherical shell, trapping a small amount of water inside,
allowing for a concentration gradient to be created between the two bilayer leaflets. For
permeation studies, this method, as well as BLM, have been mostly succeeded by other,
more robust, simple and accurate techniques (described in the following sections).
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2.3.2.3 Caco-2 cell monolayers

The Caco-2 cell monolayers are heterogeneous cell lines of human colorectal adenocarci-
noma cells which are cultured under specific conditions to approximate the morphology
and function of intestinal epithelium cells. The monolayer is supported by a permeable
filter which divides two stacked microwell plates (figure 2.18) in one of which the exam-
ined molecules are injected. The concentration in the two plates is then measured and the
apparent permeability coefficient Papp is computed according to122:

Papp =
dQ/dt
C0 A

(2.49)

where dQ/dt is the rate of permeation of the molecule, C0 is the initial concentration of the
molecule in the donor plate and A is the area of the cell monolayer surface.

Figure 2.18: Schematic of a Caco-2 monolayer permeability assay, in which the monolayer
is supported by a permeable filter123.

Caco-2 cell monolayers is an in vitro permeability assay based on the pioneering work of
Fogh and Trempe124 that begun developing in the early 90s and soon was widely accepted
by the pharmaceutical industry as the “gold-standard” method, due to the good correlation
of measured Caco-2 apparent permeability and orally administered drug absorption125.

This method, however, is characterised by certain disadvantages. Firstly, since the mono-
layers are composed of cells, all possible membrane transportation mechanisms are taking
place in the permeation which makes hard the identification of particular contributions (e.g.,
passive vs. active). Furthermore, depending on the initial cells and culture techniques, the
cell monolayers might vary in consistency, creating a discrepancy between different studies
and laboratories126. Finally, experimental assays with Caco-2 cells usually require a long
time to be completed due to the long culture times which can take up to 20 days126.
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2.3.2.4 PAMPA

In the late 90s another in vitro permeability assay was developed by Kansy et al.127. The
parallel artificial membrane permeability assay (PAMPA) comprises a similar, “sandwich”
setup as Caco-2 assays, in which a donor compartment at the bottom and an acceptor com-
partment at the top, are separated by an artificial membrane infused with several lipid bi-
layers (figure 2.19). The molecule to be examined is injected in the donor compartment and
after a certain incubation time, the concentration in the two compartments is measured to
compute permeation.

Figure 2.19: Comparison schematic between Caco-2 assays and PAMPA126.

In contrast to Caco-2 assays, PAMPA allows for better control over the membrane con-
sistency and is able to reproduce more and different cellular environments such as Caco-
2128,129 or the blood-brain barrier130. Another important advantage is that the only trans-
portation mechanism examined through the artificial membrane is passive permeation, lead-
ing to more consistent results between experiments and more reliable drug screening. Fi-
nally, the only required time for PAMPA is the incubation time which can be from a few
minutes to a day20, which is much faster than Caco-2, resulting in a reduction in the overall
cost of the process.

2.3.3 In silico methods to compute permeation coefficients

Although experimental methods cannot provide details on the separate components of the
passive permeation mechanism such as the partitioning and the diffusion, several in silico

methods have been developed to try and predict the underlying physical phenomena such
as molecular dynamics or quantitative structure–activity relationship models (QSAR).

Molecular dynamics techniques has been a particularly popular choice, because they offer
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quantitative examination of the interactions of the permeant with the membrane110. Over
the years several permeation-specific techniques have been developed, and a few of them
have become especially popular, with the z-constraint and the z-restraint methods being
the most prominent. In the following sections the most commonly used methods will be
presented together with their limitations and strengths.

2.3.3.1 Unbiased MD simulations

One of the simplest techniques to obtain permeation coefficients is to perform unconstrained
molecular dynamics simulations and measure the mean residence time of the permeant at
a certain position z. In particular, the partition coefficient K(z) of equation 2.47 can be
computed as:

K(z) =
tz

tw
(2.50)

where tz is the the total time the permeant spends at a given position z ± ∆z, and tw is the
total time it spends in the neighbouring water region.

The major drawback of this method is that there is no robust way to compute local diffu-
sion coefficients and thus compute reliable permeation coefficients. Furthermore, obtaining
converged results requires very long simulation times in order to allow sufficient sampling
of unfavourable partitioning positions. This is especially needed in cases where the perme-
ants are either very hydrophillic or very hydrophobic and thus might not even visit certain
membrane regions131. Finally, although increased number of permeants generally increase
the sampling frequency and thus the computational efficiency, a high concentration of per-
meants might disrupt certain physical properties of the membrane132,133.

2.3.3.2 Biased MD simulations

Due to the aforementioned limitations of unconstrained simulations, the majority of per-
meation studies are performed with biased molecular dynamics, where an artificial poten-
tial/force is applied to the permeant in order to sample unfavourable partitioning regions.
Berendsen and Marrink62,134 in 1993 and 1994 extended the inhomogeneous solubility-
diffusion model to relate the properties of equation 2.47 to properties that can be obtained
directly from biased molecular dynamics simulations. In particular, the partition coefficient
is calculated as:

1
K(z)

= exp
[
∆G(z)

RT

]
(2.51)

where T is the simulation temperature, R is the universal gas constant (which is equal to the
product of Boltzmann’s constant kB with Avogadro’s number NA, R = kB · NA) and ∆G(z) is
the free-energy difference between the thermodynamic states of the permeant at bulk water
and position z. Specifically, the free-energy difference represents the thermodynamic forces
(entropic and enthalpic)135 that drive the process of permeation, quantifying its spontaneity
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and preferred partitioning position. Equation 2.47 then becomes:

1
P

=

∫ z2

z1

exp
[
∆G(z)

RT

]
1

D(z)
dz (2.52)

which relates the permeability coefficient to the free-energy difference ∆G(z) and the local
diffusion coefficients D(z), which both vary along the permeation direction. In order to ob-
tain ∆G(z) and D(z), several enhanced sampling methods have been developed, such as the
z-constraint or the z-restraint which are further discussed in the following sections. More
details on the different simulation techniques can be found in several excellent publications
on the topic136–138.

2.3.3.2.1 The z-constraint method

In the z-constraint method62,134, the permeant is placed in selected z positions along the
bilayer (the direction normal to the bilayer surface) and is allowed to move freely on the xy
plane while its movement on the z direction is constrained. The free energy difference is
obtained by the potential of mean force according to:

∆G(z) = −

∫ z

water
〈 fc(z′)〉dz′ (2.53)

where fc is the force applied to the centre-of-mass of the permeant to constrain its z-
direction movement and 〈· · · 〉 indicates an ensemble average over the simulation time.

Local diffusion coefficients along the z-direction can also be calculated by the constraint
force according to:

D(z) =
(RT )2∫ ∞

0
〈δ fc(z, t)δ fc(z, 0)〉dt

(2.54)

where the denominator is the characteristic time of the unnormalised form of the autocor-
relation function of the constraint force. According to its definition δz(t) = z(t) − 〈z〉 is the
deviation of the instantaneous force from the average force acting on the permeant.

The main disadvantage of the method is that it is not directly implemented in most of the
available molecular dynamics software and requires custom MD codes139 or special usage
of modular codes, such as LAMMPS. Also, the instant force is a widely fluctuating property
and requires frequent sampling to ensure reliable uncertainty prediction for both the free-
energy differences and diffusion coefficients.

2.3.3.2.2 The z-restraint method

The z-restraint method is not a single methodology proposed by one research group or
paper, but rather a combination of methods that can be combined, proposed over the last
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two decades and from several groups. With this method, the free-energy difference can be
obtained by using the umbrella sampling method140, where a potential is used (typically
a harmonic) to restrain the movement of the permeant in a small “window” around each
position along the z-direction (the reaction coordinate path) (figure 2.20). The free-energy
difference is then calculated based on:

∆G(z) = −RT lnPb(z) + Vb(z) (2.55)

where Vb(z) is the biasing potential and Pb(z) is the permeant’s spatial distribution along z
positions. Usually umbrella windows have to overlap in order to ensure a smooth sampling
distribution. Finally, in order to obtain the unbiased potential of mean force (PMF) and
thus the free-energy difference ∆G, the weighted histogram analysis method (WHAM) is
used141,142.

Figure 2.20: Schematic of the umbrella sampling method143. The red circle is the permeant
and the blue circles are the different positions along the z-direction, in which the permeant
is restrained in a small “window”.

Computing reliable local diffusion coefficients D(z) from restrained simulations is still a
very active research field. At the moment, the most popular method is the one introduced by
Hummer23 in 2005, based on the previous works of Berne et al.144 and Woolf and Roux145.
In this method, when umbrella sampling simulations are performed with a harmonic bias
along a reaction coordinate, such as the z-direction normal to bilayer surface, the diffusion
can be computed as:

D(z = 〈z〉) =
var(z)
τ

(2.56)

where 〈z〉 is the average of the z distance between the centres-of-mass of the permeant
and membrane, var(z) = 〈z2〉 − 〈z〉2 is its variance and τ is the characteristic time of its
autocorrelation function:

τ =

∫ ∞

0

〈δz(t)δz(0)〉
var(z)

dt (2.57)

where according to the definition of the autocorrelation function δz(t) = z(t) − 〈z〉.
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In 2012, Zhu and Hummer24 further simplified the calculation of local diffusion coefficients
for simulations of continuous trajectories that do not undergo replica exchange. In partic-
ular, instead of computing the characteristic time of the autocorrelation function (equation
2.57), they approximate it according to:

τ ≈

[
n var(z̄)
var(z)

− 1
]

∆t
2

(2.58)

where n is the number of sample points of the z-distance timeseries and var(z̄) is the variance
of the mean that can be estimated with block averaging146,147. The main advantage of the
z-restraint method is that the umbrella sampling methodology is implemented in all major
molecular dynamics codes, enabling in this way a much easier and robust calculation of the
free-energy differences. However, recent studies indicated possible convergence issues that
could potentially require µs long trajectories for medium/large permeants148–150, as well as
several other sampling errors151. Furthermore, the methods introduced by Hummer and Zhu
are fairly recent and there are still no widely accepted and tested analysis tools. Specifically,
for the Zhu and Hummer method no published results exist apart from the original article.

2.3.3.3 QSAR

An alternative to the complex and computationally expensive molecular dynamics simula-
tions, is the use of quantitative structure-activity relation (QSAR) models. These are theo-
retical models that relate structural properties of the permeants to several activities, such as
the permeation through a membrane. In fact, Mayer and Overton’s111,112 discovery of the
correlation between the potency of anaesthetics and their octanol/water partition coefficient
can be considered a precursor of QSAR models. Apart from the octanol/water partition
coefficient152, modern QSAR permeation studies examine permeation correlations to the
molecular weight, the number of hydrogen bond acceptors and donors and the total polar
surface area (TPSA) of the molecule153. This is a commonly used method in the pharma-
ceutical industry due to its simplicity, ready-made tools and the high throughput screening
of molecules. Usually a database of molecules can scan hundreds of thousands of combi-
nations in a day. However, the accuracy and validity of the results depend heavily on the
initial training set of the model. Due to this, QSAR results are typically good only for a
specific set of training properties/descriptors that the model has been built for and fail in a
diverse set of permeants154.

2.3.3.4 Enhanced physical model of permeation

An enhanced physical model of permeation has been proposed recently by Leung et al.155,156

as a middle ground between the highly-accurate MD simulations and high-throughput QSAR
calculations. The idea behind the model is that the permeation coefficient not only depends
on the transfer free-energy (∆G) but also on the deionisation/tautomerisation energy penalty
(∆Gstate) and the conformational penalty for the permeant to adopt its membranephilic con-
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formation (∆Gcf). The method is based on computationally cheap calculations of the afore-
mentioned properties that are allowed due to simplistic approximations, e.g., membranes
are considered homogeneous and diffusion calculations consider permeants as spherical
particles. The advantage of the method is the computational efficiency, its scalabitity and
its modular accuracy. The latter can be improved by the fine-tuning of individual compo-
nents of the calculations depending on the requirements. Overall, the reported permeation
coefficients have generally sufficient correlation to experimental data and can provide a
useful insight especially for comparing relative permeation performance between solutes.
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2.4 Lamellar-nonlamellar membranes

2.4.1 Importance of lamellar-nonlamellar membranes

Physiologically relevant membranes predominantly exist in a lamellar phase (figure 2.9d).
They are mainly composed by phosphatidylcholine (PC) lipids that form lamellar phases
in excess water and physiological condition and phosphatidylethanoloamine (PE) lipids
that form hexagonal HII phases under the same conditions, when they have unsaturated
chains. One could then wonder what is the role of these nonlamellar lipids in the complex
lipid matrix of the lamellar structure. Researchers for many years considered lipid bilayers
simply as “filler or passive solvent” for membrane-embedded proteins157.

During the last thirty years, however, with the progress in the study and characterisation of
lipids, a growing amount of evidence indicates that membranes with lamellar-nonlamellar
compositions and cholesterol affect the modulation of protein function78,158–163. This mech-
anism can provide an explanation for general anaesthesia where ion channels activate and
deactivate according to the concentration of nonlamellar lipids88,96,164 or the concentra-
tion of solutes that alter membrane properties82,90,98,165–168 e.g., ethanol80,81,169–174. Finally,
lamellar-nonlamellar mixtures might be necessary for membrane processes such as fission,
fusion and pore formation83,93,175. The aforementioned observations have initiated a very
active research field that is aiming to identify the membrane property that is affected by the
lamellar-nonlamellar compositional changes106 and regulates the underlying mechanisms
of such phenomena.

Figure 2.21: Protein conformational changes due to spontaneous curvature. When the spon-
taneous curvature is negative, the protein will adopt a conformation (right schematic) of
larger hydrophobic matching (grey area)176.

In particular for the membrane-protein interactions, two approaches have been formulated
to connect it to a known membrane property; the first is based on the spontaneous curvature
frustration84,157,177–182 and the second is based on the lateral pressure profile78,87,92,96,97,183–185

. According to the former, the stored elastic energy of a bilayer can facilitate one confor-
mational change of a protein over another, depending on whether the protein change will
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release the curvature frustration. As it can be seen from figure 2.21, membranes with neg-
ative spontaneous curvature will promote a protein conformation with larger hydrophobic
matching. According to the latter approach, differences in the lateral pressure profile might
induce localised changes in the protein lateral area and consequently alter its conformation
and affect its functionality (figure 2.22). It has been shown that both of these approaches
are equivalent (they predict the same shape alterations) and they are presented in detail in
several recent review articles93,186,187. This is not surprising given the close analytical re-
lation between the pressure profile and the spontaneous curvature through the first integral
moment (equation 2.43).

Figure 2.22: Schematic of membrane-protein interactions and the corresponding lateral
pressure distribution92.

2.4.2 Properties of lamellar-nonlamellar membranes

From the previous section it is clear that lamellar-nonlamellar mixtures have an impor-
tant role on numerous biological processes. A lot of attention has been given in the past
on the phase formation of HII hexagonal phases and the energetic costs of bending and
hydrating such bilayer mixtures188–191. In the following section past studies that specif-
ically examined the mechanical and dynamical properties of such mixtures will be pre-
sented, in order to provide a solid perspective on the effect of nonlamellar lipids. Ta-
ble 2.2 summarises the most important findings of these studies. As it can be observed,
most of the research was done with dioleoylphosphatidylcholine (DOPC) and dioleoylphos-
phatidylethanolamine (DOPE) lipids, although some had a variety of acyl chains including
the palmitoyloleoylphosphatidylcholine (POPC) and palmitoyloleoylphosphatidylethanolamine
(POPE).

Templer et al.72 have utilised pyrene probes attached to PC lipids, in order to probe the
lateral pressure distribution inside the core of DOPC:DOPE bilayers of varying relative
composition. Although their method only allowed probing of limited positions and later
came under critique by Fraňová et al.100, they saw an increase of pressure in the chain
regions with the addition of PE lipids.

Cantor184 performed statistical thermodynamic calculations to estimate the lateral pressure
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profile, the thickness and the area per lipid of symmetrical lipid bilayers for a wide range
of compositions. His results for a theoretical model of a POPC:POPE mixture predicted
that an increase on the POPE content led to a decrease in the area per lipid and an increase
in the thickness. He also saw a significant redistribution of pressures from the headgroup
region of the bilayer towards the centre without disrupting, however, an overall decreasing
behaviour from the outwards to the centre.

De Vries et al.68 utilised atomistic molecular dynamics simulations with DOPC:DOPE bi-
layers of varying content. They observed that properties did not change linearly and a
saturation behaviour was found for the PC:PE 1:3 composition. Increase in DOPE led to
a decrease in the area and volume per lipid and an increase in the thickness of the bilayer.
Also an increase in the hydration of the PC headgroups was observed. Finally, in their
simulations no domains between lipids were formed.

Lu and Voth192 developed a solvent-free coarse-grained model for a 1:1 DOPC:DOPE mix-
ture. Their simulations focused on the dynamic properties such as the mean square dis-
placement of the lipids and domain formation. In regards to the latter, they observed small
clusters of the same lipids although these two lipids have been reported to be well mixed in
previous experiments193,194.

Orsi and Essex65 simulated mixed DOPC:DOPE bilayers in various concentrations with
their own coarse-grained model195–197. They examined the lateral organisation and did not
observe any lipid domains. Furthermore, they calculated the area per lipid which decreased
with increased PE content while the electron density profile had a marginal change. Also,
they provided, for the first time, a quantitative characterisation of the lateral pressure profile
in which the addition of PE lipids increased the positive pressure in the headgroups and
chains regions and also increased the magnitude of the negative pressure in the polar/apolar
interface. Finally, the spontaneous curvature decreased with higher PE composition.

Figure 2.23: Electron density profile for various DOPC/DOPE compositions22.
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Figure 2.24: Lateral pressure profile for various DOPC/DOPE compositions22.

Perin et al.21 performed atomistic molecular dynamics simulations on various mixtures
including a 1:1 POPE:POPG(palmitoyloleoylphosphatidylglycerol). While they reported
the lateral pressure profile, they did not systematically examined compositional changes
and thus no clear conclusions on the results could be made in regards to the effect of PE.

Ding et al.22 is the first atomistic MD systematic study of lamellar-nonlamellar bilayers
that reports the lateral pressure profile. They observed a decrease of 6% and 3.5% for area
and volume per lipid, respectively, and an increase of 4% in the thickness, with increased
PE content. The changes in electron density profile were also marginal (figure 2.23). The
lateral pressure profile changed considerably with the addition of PE (figure 2.24). The
headgroup peaks and interface troughs were shifted slightly outwards. The magnitude of
the former reduced and of the latter increased. All across the chain region, the pressure
increased.

Finally, membranes are greatly affected by chains’ unsaturation and length. An increase in
the number of carbon atoms in the chains, naturally, increases the thickness of the mem-
brane. Also, unsaturation was found to decrease the sensitivity of membranes to tempera-
ture and phase changes79. An increase in unsaturation affected the lateral pressure profile by
redistributing stresses from the interior towards the lipid-water interface76. Finally, mem-
brane behaviour is affected by cholesterol. Several studies77,94,102,198 have shown that it
alters the pressure profile and thus its elasticity to more rigid or elastic, depending on the
rest of the lipids saturation.
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Chapter 2. Theoretical background

2.4.3 Permeation through pure and mixed membranes

Lipid composition clearly affects the mechanical properties of the membranes which in turn
affect, through the lateral pressure profile and the spontaneous curvature frustration, crucial
biological functions such as interactions with proteins and membrane fusion. Another im-
portant property of the membrane is to act as a regulator of permeation for the cell, as it
was discussed in section 2.3. The combination of the above gave rise to a relatively new
field of research that attempts to study membrane-solute interactions199. Previous stud-
ies on passive permeation through biological membranes can be categorised in two main
groups, those that examined the permeation from the perspective of the permeants such as
the molecular weight, the size and the chemical moieties, and those that examined it from
the perspective of the lipid bilayers. This section will focus on studies from both groups
that involved permeation studies through mixtures or varying lipid compositions.

Since water is the predominant biological solvent, its penetration through lipid bilayers
has been of particular interest to researchers, especially in regards to the permeation path-
way200. However, while the majority of permeation studies in the past focused on wa-
ter, other small molecules and drugs have been under investigation. For most small non-
electrolytes, penetration is generally accepted to take place without the assistance of special
proteins201 and the permeation rate changes have been correlated to various alterations of
the lipid amalgam. Table 2.3 summarises all the studies that will be discussed in the fol-
lowing paragraphs and have focused on lamellar-nonlamellar compositions.

One of the first lipid characteristics that has been examined is the length of the lipid chains
and consequently the bilayer thickness202. In the study of Jansen and Blume203, where
DMPC, DPPC and DSPC were examined, no direct conclusion was established between
permeation and thickness. However, Paula et al.121 observed a fivefold linear decrease of
permeability with an increase of PC bilayer thickness, as a result of longer lipid chains.
An MD study on several small molecules by Sugii et al.204 was in agreement with Paula
et al. as they estimated a considerable decrease in permeation for increased chain lengths
(DMPC, DPPC, DLPC). Furthermore, Lee et al.205 have examined model stratum corneum
(SC) membranes composed of ceramide, cholesterol and a mix of free fatty acids (FFA)
of varying length but did not measure a significant change in permeation due to the length
difference. Arouri et al.75 studied the effect of free fatty acids in the permeability barrier
of DPPC liposomes and MCF-7 cell lines. For the DPPC liposomes, they observed a linear
relationship between reduced permeability rates and increase of fatty acid lengths which
was however, not observable in the more realistic model of living cells (MCF-7 cell lines).

Another important parameter is the unsaturation of lipid chains. It has been observed both
experimentally115 and via MD simulations206 a clear increase on permeation with increased
chain unsaturation, which can be attributed to looser packing and greater area per lipid, or
increased free volume in the bilayer centre that can locally facilitate permeation207. In a sys-
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tematic study of structural properties of membranes on permeation, Mathai et al.208 have
only found a clear correlation of permeation to area per lipid while the results for thickness,
bending and area compressibility modulii did not indicate an obvious relationship (figure
2.25). In conclusion, the results from various studies regarding the thickness are contra-
dictory, however area per lipid seems to produce more obvious correlations (membranes of
high AL tend to have higher P).

Figure 2.25: Correlation of water permeability to structural properties of different mem-
branes208.

Lipid headgroups play also an important role on the permeability of molecules through the
bilayer. Jansen and Blume203 measured water permeability for pure lipid vesicles com-
prising different headgroups. They observed an almost twofold increase in permeation for
pure DMPE compared to pure DMPC and a marginal decrease for DPPE compared to pure
DPPC. They attributed these differences to increased intra-molecular hydrogen bonding of
PE lipids but did not explain the discrepancy between them. Similarly, Johansson and Lin-
dahl209 have computed the solvation free-energy of 8 amino acids in 2 regions of several
membranes. They found that for all amino acids, the absolute free-energy is higher for
PE bilayers, due to their higher propensity for inter-lipid hydrogen bonding, which reduces
bonding with polar solutes and makes the bilayer more hydrophobic, enhancing the solva-
tion of nonpolar solutes. Also, Hub et al.210 observed an order of magnitude decrease in
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permeation of ammonia between a pure POPC and pure POPE bilayer.

In regards to lamellar-nonlamellar mixtures, Huster et al.115 have observed that the addition
of nonlamellar DOPE lipids reduced the permeation of water by 40 % in comparison to a
pure DOPC bilayer and by 18 %, within statistical error, when mixed on a pure polyunsat-
urated 18:1-22:6 PC bilayer. The results were explained based on the lipid order increase,
which is more prominent in saturated and monounsaturated lipids, and which led to tighter
packing and smaller area per lipid. Purushothaman et al.211 very recently examined the
permeation of the antibiotic norfloxacin through pure and mixed DOPC, DOPE and DOPG
bilayers. As it can be seen from figure 2.26, the addition of PE lipids generally reduced
the permeation coefficient, although the reduction was higher for smaller concentrations of
PE. The authors attributed this either to the higher intrinsic curvature which might assist
the solubility or to low accuracy of their measurements.

Figure 2.26: Permeation of the antibiotic norfloxacin through lamellar-nonlamellar mem-
branes211.

Finally, although in this dissertation the effect of cholesterol on passive permeation is not
examined, it is noteworthy that there have been many past studies indicating that by increas-
ing membrane rigidity212, cholesterol also affects permeation. In particular, the addition of
cholesterol decreases water48,213 and oxygen214–216 permeability substantially, while other
small molecules are affected according to their polarity210,217,218 and size219.
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Chapter 3
Materials and methods

3.1 Materials

3.1.1 Phospholipids and bilayer compositions

Molecular dynamics simulations were performed on two different glycerophospholipid bi-
layer systems. The first comprised only DOPC (1,2-dioleoyl-sn-glycero- 3-phosphocholine)
lipids and the second was a mixture of 1 DOPC to 3 DOPE (1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine) lipids. The chemical structure of the two different lipids is presented
in figure 3.1 and the details of the bilayer systems examined are shown on table 3.1. Each
system comprised 4300 water molecules, 128 lipid molecules (64 per leaflet) and 1 perme-
ating molecule. Both the pure DOPC and the DOPC:DOPE(1:3) membrane systems were
taken pre-equilibrated (1 µs) from a recent published study22. Also, both membranes were
fully hydrated; PC bilayers require 23 waters per lipid while PE bilayers require 10221.

N+
O P

O

O−
O

H O

O

O

O

(a) 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)

H3N+
O P

O

O−
O

H O

O

O

O

(b) 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)

Figure 3.1: Skeletal chemical structure of the simulated phospholipids

DOPC (figure 3.1a) is a typical representative of the lipids that form lamellar structures and
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Table 3.1: Lipid composition of simulated membranes. N refers to the number of each
component.

System NDOPC NDOPE Nwater

DOPC 128 0 4300
1 DOPC : 3 DOPE 32 96 4300

are predominant in biological membranes. Its chemical structure comprises a polar head-
group region where a choline is linked to the phosphate group, and an apolar hydrocarbon
region with two monounsaturated oleic fatty acids of 18 carbons, ester linked to the first
two hydroxyls of the glycerol backbone. Both monounsaturated DOPC chains kink due to
the cis double bond.

DOPE (figure 3.1b) is also a good representative of another type of lipids found in bio-
logical membranes, those that have a propensity to form nonlamellar inverted hexagonal
HII structures (figure 2.9b), depending on the temperature and number of hydrating water
molecules53,189,198,222,223. DOPE differs from DOPC on the amino alcohol of the headgroup
region, where instead of a choline, it has the substantially smaller ethanolamine linked to
the phosphate group. Both of these phospholipids are well studied molecules and have been
used in the past in several molecular dynamics permeation studies as components of model
biological membranes136.
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3.1.2 Permeating solutes

To examine the permeation process, 13 small molecules and drugs were selected as solutes;
10 with molecular weight lower than 100 g mol−1 and 3 with higher. The selection of the
molecules was based on several factors so that a diverse set of physical properties would
be examined in the permeation study. Table 3.2 presents the chosen solutes as well as
their molecular weight, hydrogen bonds donors and acceptors, the topological polar surface
area (TPSA) which is the sum of the surface over all polar atoms and their hydrogens,
the number of heavy (non-hydrogen) atoms, QSAR computed logarithm of octanol/water
partition coefficients logPo/w and finally, where available, the experimental logPo/w.

Table 3.2: Physical properties of the permeating molecules

Molecule MW HB HB TPSA HA Exp CAx
[g/mol] Dn‡ Ac‡ [Å

2
] LogPo/w LogPo/w

Ammonia NH3 17.03 1 1 13.6 1 -0.98
Water H2O 18.02 1 1 25.3 1 -1.38† -0.65
Fluoromethane CH3F 34.03 0 1 0 2 0.51∗ 0.37
Carbon dioxide CO2 44.01 0 2 34.1 3 0.83† -0.28
Propane C3H8 44.10 0 0 0 3 2.36† 1.8
Ethanol C2H6O 46.07 1 1 20.2 3 -0.30∗ -0.16
Urea CH4N2O 60.06 2 1 69.1 4 -2.11† -1.36
Isopropanol C3H8O 60.10 1 1 20.2 4 0.05∗ 0.25
Glycine C2H5NO2 75.07 2 3 63.3 5 -3.21† -3.41
Phenol C6H6O 94.11 1 1 20.2 7 1.50∗ 1.67
Benzoic Acid C7H6O2 122.12 1 2 37.3 9 1.87∗ 1.63
Coumarin C9H6O2 146.15 0 1 26.3 11 1.39† 1.78
Paracetamol C8H9NO2 151.17 2 2 49.3 11 0.91

MW: Molecular weight
HB Dn: The sum of the atoms in the molecule which have the hydrogen donor property
HB Ac: The sum of the acceptor atoms. An acceptor atom always has a lone electron
pair/lone electron pairs that is capable of establishing a hydrogen bond
TPSA: Topological polar surface area
HA: Number of heavy atoms (non-hydrogen)
Exp LogPo/w: Experimental logarithm of octanol/water partition coefficients
CAx LogPo/w: Computed octanol/water partition coefficient with the ChemAxon logP152

QSAR online tool “Chemicalize” (http://chemicalize.com)
∗ : Reference224

† : Reference225

‡ : Computed with the online tool “Chemicalize” (http://chemicalize.com)

52

http://chemicalize.com
http://chemicalize.com


Chapter 3. Materials and methods
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Figure 3.2: Skeletal chemical structure of the simulated permeants
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3.2 Simulation protocols

3.2.1 The z-constraint method

For the z-constraint method, only ammonia, water, fluoromethane and carbon dioxide (table
3.2 and figure 3.2) were simulated through the pure DOPC and mixed DOPC:DOPE mem-
brane. Each permeant was placed in 30 different positions along the bilayer, from the water
region to the membrane centre. The simulations were performed only on the upper half
monolayer and then due to the bilayer symmetry, the results were mirrored in the opposite
direction.

The LAMMPS226 (version October 2014) molecular dynamics software was used to per-
form the simulations. The non-bonded and bonded pairwise interactions for lipid and water
molecules were modelled with the CHARMM36 (version August 2014) force field (FF) pa-
rameters227,228, while permeant molecules were represented by compatible CGenFF229,230

parameters. When interactions between particles were not explicitly defined, the arithmetic
mixing rules of LAMMPS were used. Non-bonded Van der Waals interactions were ap-
proximated with a Lennard-Jones potential with an energy switching function, in order to
be compatible with the CHARMM FF. The inner cutoff was taken at 1 nm and the external
cutoff at 1.2 nm. The short range electrostatics were computed analytically from a Coulomb
potential with a cutoff at 1.2 nm and the long range electrostatics were computed in recipro-
cal space with the particle-particle particle-mesh solver231,232 which is similar to the PME28

technique presented in section 2.1.2.2.

The equations of motion were integrated with the velocity-Verlet algorithm and all simu-
lations were performed with a 2 fs timestep by constraining the hydrogen covalent bonds
with the LAMMPS implementation of the SHAKE algorithm38,39. The temperature and
pressure of the systems were kept at 300 K and 1 bar with the Berendsen42 thermostat and
barostat respectively, with a coupling time of 2 ps. The pressure was applied to the system
semi-isotropically, having the same magnitude on the x and y directions but different on the
z. The momentum of the whole system was removed every 100 timesteps to keep the total
centre-of-mass still. Finally, the trajectory and the constraint force applied on the perme-
ant, computed with 3 different methods (see appendix A), was sampled every 10 ps. The
simulation process following the creation of each system consisted of 4 steps:

1. Relaxation. A small 10 ps relaxation simulation was executed with an imposed 0.1 Å
limit in the distance each atom can move per timestep. This technique was used as
an alternative to an energy minimisation simulation, in order to fix any overlapping
particles and extreme forces due to steric effects, without crashing. The disadvantage
with the energy minimisation in the z-constraint method is that the permeant could
potentially move along the z-direction and thus the constraint simulation would con-
tinue in the wrong z position.
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2. Equilibration. The system was equilibrated for 500 ps and then the first production
simulation started.

3. Production. Production simulations ran in separate 10 ns sets for a total of 100 ns.

4. Pre-analysis. For the analysis of the results, depending on the convergence, the first
sets of the production simulations were discarded as further equilibration.

The first part of the z-constraint results analysis examined how the sampling of the con-
straint force affected the free-energy difference profile. Furthermore different convergence
methods were tested and then the free-energy difference, the local diffusion coefficients and
the permeation coefficients were computed for all permeants and the DOPC and DOPC:DOPE
membranes.

3.2.2 The z-restraint method

With the z-restraint method, all the molecules presented in table 3.2 and figure 3.2 were
examined with the DOPC and DOPC:DOPE(1:3) membranes. In order to perform the
simulations, the GROMACS 5.1.1233–238 molecular dynamics software was used. The
equation of motion was integrated with the leap-frog algorithm (section 2.1.4). Van der
Waals forces between atoms were approximated with a Lennard-Jones potential with a
switching cutoff from 1 nm to 1.2 nm, short range electrostatics were approximated with
a Coulomb potential with a cutoff at 1.2 nm and finally for long range electrostatics the
Smooth Particle-Mesh Ewald (SPME)239 method was used. Lipid molecules were rep-
resented by the CHARMM36 (August 2015 version) force field227,228, permeant molecules
were represented by CHARMM36 or compatible CGenFF229,230 parameters and water molecules
were represented by the CHARMM implementation of TIP3P240. Permeants were inserted
manually in 28 positions along the depth of the upper lipid leaflet, from the water region to
the bilayer centre.

Initially, an energy minimisation was performed to correct any potential overlaps and then
a short constant temperature and pressure (NPT) 100 ps equilibration was ran. Both dur-
ing the minimisation and the equilibration, the distance between the centres of mass of
the membrane and the permeant was constrained, in order to ensure the correct distance
between them in the beginning of the production simulation. Overall 28 z-positions were
examined for each permeant-membrane combination and for each, a 100 ns NPT production
simulation was performed, totalling 2.8 µs simulation time for each system.

For temperature coupling during the equilibration and production simulations, the velocity
rescale algorithm45 was used. All the systems were kept at 300 K and the coupling time
constant was set at 1 ps. Pressure was kept at 1 bar with the Berendsen42 and Parrinello-
Rahman46,241,242 barostats during equilibration and production simulations, respectively.
For both, the coupling time constant was 5 ps and for pressure the coupling type was semi-
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isotropic; isotropic for x and y directions but independent from the z direction. In order to
utilise a 2 fs timestep, covalent bonds with hydrogen atoms were constrained; the SETTLE
algorithm243 was used for water molecules and the LINCS algorithm40,41 was used for the
rest.

The restraining forces and z-axis fluctuations of the permeant were sampled every 1 ps
resulting in two timeseries of 100 000 points each. The first 30 ns (30 000 points) were
discarded as extra equilibration time and all final results were produced using the last
70 ns. Standard errors for the calculated properties were computed with the block aver-
aging method146,147 (section 4.3), where the 70 ns timeseries were separated in 7 blocks of
10 ns.

The analysis of the results of the z-restraint method began with a convergence study to
identify when free-energy profiles were approximately stable. Then the free-energy profiles
∆G(z) were computed with the umbrella sampling method and the GROMACS implemen-
tation244 of the weighted histogram analysis method (WHAM)142,245. The permeant was
restrained by a virtual spring with a harmonic force constant of 1000 kJ mol−1 nm−2 along
the z-axis, every 0.1 nm from the water slab to the bilayer core.

Local diffusion coefficients D(z) were computed with two different methods, the one devel-
oped by Hummer23 (equations 2.56 and 2.57) and the one simplified by Zhu and Hummer24.
A comparative analysis between the two methods was performed to identify the best. Other
elements of the diffusion calculation, such as the numerical integration of the autocorre-
lation function or the handling of oscillatory profiles with the application of filters, were
further examined.

The resistance profiles and the permeability coefficients were computed by direct substitu-
tion of ∆G(z) and D(z) on equation 2.52. In order to increase the computational efficiency
and since the monolayers’ composition was the same for each examined membrane, the
simulations covered only one leaflet of the bilayer, similar to the z-constraint method. Af-
terwards, the position-dependent results were treated as symmetrical to cover the entire
z-dimension of the bilayer. The statistical significance of the differences between the per-
meations of the pure and mixed membranes was also checked.

Furthermore, the hydrogen bond formations between the permeants and the lipid-water
molecules were computed to examine any possible effect on the permeation. Also, a corre-
lation and regression analysis was performed for the computed permeation values in relation
to several physical properties (table 3.2) of the permeants. Finally, the proper dynamics of
the bilayer systems was ensured by visualising the lateral mobility of the permeant and
computing the lateral diffusion coefficients of the DOPC and DOPE lipid molecules.
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MDrug: A preparation, analysis and HPC
management toolbox

One of the main challenges in passive permeation studies is the preparation, management
and analysis of hundreds or even thousands of simulations. While several research groups
have performed similar studies, there is not at the moment a widely accepted, universal,
reliable set of tools to assist the researcher throughout the whole process. In the best cases,
individual tools are provided by MD software packages, but even then, they lack inter-
connectivity or features. In order to perform the z-constraint and z-restraint permeation
studies presented in this dissertation, more than 3100 production systems were created∗,
simulated and analysed, not including energy minimisation, equilibration, benchmarks and
testing simulations. Therefore, one of the most prominent tasks of this work was the cre-
ation of a reliable toolbox to allow and automate the aforementioned process.

The created toolbox, namely MDrug, can be separated in three distinct categories, the pre-
processor, the HPC simulation-manager and the post-processor. In the following section,
the philosophy of operations will be presented for each part, along with their respective
algorithms/techniques. All of these tools are publicly available in a GitHub repository†

under an LGPLv3 license.

4.1 Pre-processing of the systems
The pre-processing tools include all those operations that are necessary to gather com-
ponents, organise them and prepare the production system. The prerequisites (input) for
running a permeation study are:

∗z-constraint: 8 permeants −membranes × 30 positions × 10 sets of 10 ns = 2400 simulations;
z-restraint: 26 permeants −membranes × 28 positions = 728 simulations

†https://github.com/mpalaiokostas/MDrug
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1. an MD program selection (currently LAMMPS or GROMACS)

2. a method selection (z-constraint (only available with LAMMPS) or z-restraint (only
available with GROMACS))

3. a .pdb file of a properly equilibrated membrane

4. a .pdb file of a permeant that is compatible with the CHARMM36 force field

5. an initial and final z position, as well as the z interval

6. a high performance computer HPC server to upload the created test case

The main advantage of MDrug is the automated handling of hundreds of files without the
necessity of user intervention. All the aforementioned operations create a lot of files but
with MDrug, the user just decides on the 6 input parameters and with the ease of pressing a
button, a complete permeation study case (a membrane-permeant combination) is automat-
ically prepared and uploaded, ready to be simulated. A permeation-case generally consists
of 4 main directories that allow each user to supervise the whole process from the beginning
to the end (figure 4.1).

ps--MD program--method--membrane-permeant-time stamp

100--Pre Processing

200--Benchmarks

300--Simulations

400--Post Processing

Figure 4.1: MDrug produced directory tree. This structure allows the user to check each
step of the permeation study clearly and in detail.

Figure 4.2 shows the operational flow chart based on the input. At the moment MDrug
supports two MD programs, LAMMPS and GROMACS and two permeation methods, z-
constraint and z-restraint, respectively. In theory, both LAMMPS and GROMACS allow
both methods, however in practice there are severe issues on performance or compatibility
and thus only two combinations are supported. The pre-processing software is based on
the 3.4 version of the Python programming language which performs all the file/directories
manipulations, invokes external software for system creations and short simulations and
connects/uploads the complete test case to any HPC securely (key-based SSH connections).
For system creation, a TCL script is used in conjunction with the visual molecular dynamics
(VMD) application to merge the permeant and membrane structures and also move the per-
meant to the correct position. Then in the case of GROMACS/z-restraint, MDrug invokes
certain GROMACS-suite tools through compatible scripts to perform an energy minimisa-
tion and a small equilibration for each z-position.
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LAMMPS

z-restraint
z-constraint

Figure 4.2: Flow chart of the pre-processing operations of MDrug.
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4.2 HPC simulation management
Once permeation cases are uploaded to an HPC, the MDrug simulation management tool-
box is responsible for submitting and monitoring simulations. The toolbox is especially
useful in cases where there are more than 2 permeation cases uploaded in the HPC and
there is a limit in the number of jobs that can be submitted in the queue and running. For
instance, the UK national supercomputer, ARCHER, allows up to 16 submitted jobs in the
queue and up to 8 running at the same time. Considering that each permeation study com-
prises 28 to 30 positions, normally, the user would have to manually check the queue and
submit new jobs all the time. Instead, the MDrug toolbox allows:

• the monitoring of the HPC user queue
• the automatic submission of jobs depending on the available slots
• the monitoring of the status of each job (waiting, started, crashed, completed)
• the creation of local log files based on the monitor operations

The flowchart of the aforementioned processes is presented in figure 4.4. The key advantage
of the toolbox is that it allows the user to easily know the progress of each permeation case
by simply looking at a specially formatted log file (figure 4.3). Also, it saves a lot of time
and utilises the HPC budget in the most efficient way. The monitoring toolbox is entirely
written in the BASH scripting language and requires a Linux environment with the Crontab
scheduling manager in order to perform connections to the server hourly.

Figure 4.3: Example monitor log file for the mixed membrane and water permeant.
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Figure 4.4: Flow chart of the HPC monitoring operations of MDrug.
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4.3 Post-processing of the systems
The third set of tools of MDrug is dedicated to the visualisation and analysis of the simula-
tion trajectories and output. This part was also developed with the end-user in mind, so that
it performs complex analyses or sophisticated visualisation with minimal effort. The tools
can be categorised as follows:

• checking completion and merging of multi-part trajectories
• visualisation of trajectories
• computing permeation properties by using simulation output
• performing convergence studies
• extracting centre-of-mass translation on the z direction
• performing block-averaging and bootstrapping analysis to compute statistics
• computing lateral mean-square-displacement (MSD) to ensure proper dynamics
• performing hydrogen bonds analysis
• produce publication-quality plots, automatically, for all the above

(a) Log file before extended simulation (b) Log file after extended simulation

Figure 4.5: Examples of log files that are produced by the MDrug completion check tool
before and after the extension of simulations.

In some occasions the available computational time on an HPC is not enough to allow the
completion of the required simulation time and thus it is common for the HPC to kill these
overextended jobs. This however creates an issue for the researcher as it is very difficult
to distinguish the simulations that are completed successfully from those that are killed,
especially for the thousands of simulations that are involved in a permeation study. MDrug
provides a Python script that allows the researcher to quickly check which simulations have
this problem (figure 4.5). Then it automatically creates all the necessary files to extend the
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simulations that were killed, which can be easily uploaded back to the HPC to continue.
Once they are completed, MDrug allows an easy and safe merging of all the trajectories
and output files from the different folders into one.

Regarding the visualisation, the VMD software is used in conjunction with a TCL script
that has instructions regarding the permeation location, colouring and material selections,
lighting and rendering options. Therefore, the visualisation of 30 systems is fast and reliable
allowing quick inspection of important simulation phases (system creation, minimisation,
equilibration etc.). The visualisation of systems after their creation is extremely important
to ensure that permeants with complicated structures or aromatic rings are properly intro-
duced in the membrane; in some occasions entanglement of lipid chains by aromatic rings
is possible and thus MDrug allows the researcher to quickly fix it and avoid problematic
simulations (figure 4.6).

Figure 4.6: MDrug system visualisation allows early error detection. In this case, a perme-
ant with aromatic rings, unnaturally entangles a lipid chain, just after system creation.

An important criterion for the evaluation of simulation results is their convergence over
time. MDrug allows the researcher to run 2 different convergence techniques for each
position and examine whether important properties like the free-energy difference, diffusion
or permeation stabilises over time. The convergence techniques are examined in detail in
section 5.1.2.1 where the results of this project are presented.

The main functionality of the post-processing toolset is the computation of the free-energy
difference profile, the local diffusion coefficients profile and naturally the permeation coef-
ficients for each permeant through each membrane. All the computations, as all the rest of
MDrug features, are computed with the press of a button regardless of the number of posi-
tions examined. For permeation studies with LAMMPS as the selected program, a Python
code is used to compute all properties according to equations 2.53 and 2.54. For studies
performed with GROMACS, the free-energy difference is computed by the GROMACS
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tool “gmx wham” and the local diffusion coefficients can be computed with two different
methods shown in section 2.3.3.2.2. The differences in the results between the two methods
are presented in section 5.3.2.

The centre-of-mass, lateral MSD and hydrogen bonds analyses are performed with TCL
scripts and VMD and a Python script is utilised to manage the files and output results for all
positions. Lateral diffusion can be alternatively computed with the GROMACS msd tool if
this is the selected program.

The statistics for all properties and for each position are computed with the block averaging
method introduced theoretically by Flyvbjerg and Petersen146. The code used in MDrug is
a modified version of the Python implementation by Berendsen147.

Finally, all the aforementioned results can be easily visualised either in a per-case or in a
case-comparison way, with high quality plots produced by the Python library matplotlib,
and a general management Python script.

Overall, the complete set of features provided with MDrug is expected to enhance consid-
erably the productivity of any researcher performing permeation studies, whether in a local
computer or in a remote HPC. All the results presented in this dissertation were produced
with MDrug.
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Results and discussion

The results presented in the following sections are ordered as follows. In the first section
(5.1) all the methodological issues of both the z-constraint and z-restraint methods are ex-
amined and addressed. The main results of this study start from section 5.2 where both the
z-constraint and the z-restraint findings are presented in a way to cover the two correspond-
ing aims of this dissertation:

• assessing the optimal method for automated, fast and robust permeation studies

• isolating the effect of the nonlamellar DOPE lipids on permeation.

5.1 Methodological issues

5.1.1 Computational efficiency

All the results presented in the following sections were produced with MD simulations
that were run in the ARCHER UK national supercomputer located in the University of
Edinburgh. One of the most surprising observations was the difference in the computational
efficiency between the two methodologies and chosen MD software.

The combination of the z-constraint methodology and LAMMPS produced approximately
10 ns of trajectory per system per day. Each system consisted of 1 z-position, a mem-
brane and a permeant. In total ARCHER allowed only 8 systems to run at the same time
therefore in 24 h, a total of 80 ns could be completed. The z-restraint methodology and
GROMACS was substantially faster, as it produced 100 ns of trajectory per system per day
and 800 ns per day, in total. Due to a technical problem in its code∗, the theoretically avail-
able z-constraint method could not be tested with GROMACS. Due to this big difference in

∗ www.mail-archive.com/gromacs.org_gmx-users@maillist.sys.kth.se/msg16753.html

www.mail-archive.com/gromacs.org_gmx-users@maillist.sys.kth.se/msg17177.html
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the computational efficiency, the examination of 4 permeants with the z-constraint method
required a year to complete. On the contrary, the examination of 13 permeants with the
z-restraint method required less than 6 months. Table 5.1 summarises all the observations.

The reason behind this huge difference in computational efficiency lies in two factors that
are more related to the software rather than the methods. Firstly, GROMACS is heavily
optimised to simulate biological systems in comparison to LAMMPS that is more versatile,
modular but also less biology-oriented. Secondly, it was noticed that LAMMPS updates
the neighbour list in every timestep in comparison to GROMACS that by default it updates
it every 40 and this could play a role in the slowdown of calculations. Overall, in terms of
computational efficiency, GROMACS was found to be much better for permeation simula-
tions with a 10× speed-up. The real bottleneck for the permeation study with GROMACS
was the limit of 8 running jobs on ARCHER per day.

Table 5.1: Comparison of performance between LAMMPS and GROMACS and the re-
spective MD software. All simulations ran on the ARCHER UK national supercomputer.

Method
Simulation time

per system
per day

Total
simulation time

per day

Number of
permeants

Physical time for
simulating the
complete set

z-constraint 10 ns 80 ns 4 1 year

z-restraint 100 ns 800 ns 13 6 months

5.1.2 Convergence of simulations

5.1.2.1 Establishing a convergence evaluation technique

According to equation 2.52, the exponential of the free-energy difference is the dominant
factor in the computation of the permeation coefficient and as such, it was chosen as the
key property to examine simulation convergence. However, the constraint/restraint force
and the derived potential of mean force are dynamic properties that fluctuate during the
simulation. In fact, statistically, due to the nature of MD simulations, these properties can
never be considered absolutely converged due to the fact that ergodicity is an assumption
and the complete exploration of phase space is impractical or impossible246. Therefore,
special techniques have been used in the past but also devised in this dissertation in order
to establish a measure of relative convergence.

Before examining the convergence for all permeants, a case with the DOPC membrane and
the water molecule was tested with two different techniques, in order to examine which is
the best in identifying convergence. In the first technique, the constraint force timeseries
was separated in ten different 10 ns parts and the free energy profile was created for each
part. As it can be seen in figure 5.2a, the free-energy profile qualitatively obtains its form
from the first 10 ns, however, quantitatively it fluctuates over 2 to 3 kcal mol−1 in both the
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head group and bilayer centre regions. Therefore, an obvious convergence time limit could
not be identified.
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Figure 5.1: Schematic of the convergence study technique with cumulative sets of the time-
series.

In the second technique, the constraint force timeseries was separated in 10 consecutive
cumulative parts starting from the beginning of the timeseries and then each consecutive
part was added in the timeseries used to produce the free-energy profile. Figure 5.1 visu-
alises how this approach works. Furthermore, the results produced with this technique are
shown in figure 5.2b and in contrast to the previous one, both quantitative and qualitative
convergence was revealed clearly after the first 3 cumulative sets, making it a better and
more robust way to identify convergence.

(a) Method 1: Independent sets. (b) Method 2: Cumulative sets.

Figure 5.2: Comparison of convergence study methods for the DOPC membrane and a
water permeant

Similar methodologies have been used in previous studies. Bemporad et al.247–250 have
examined the behaviour of the constraint-force timeseries to ensure its convergence to a
particular value. Neale et al.149 have used the block averaging146 method to identify the
equilibration time based on the initial systematic errors. In the same article, they propose
the definition of a key observable, such as the binding free-energy, and the estimation of
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convergence based on its behaviour as a function of simulation time. Nitschke et al251

defined as the key observable in their study of ammonia and ibuprofen, the PMF barrier
and minimum respectively.

Paloncỳovà et al.252 used a contour plot showcasing the time evolution of the energy min-
ima and barriers with their respective positions. Carpenter et al.253 used a variation of the
moving-average method to examine the convergence of free-energy profiles. Finally, Lee et
al.254 observed that simulation over the whole range of the bilayer thickness instead of half,
even for shorter time, generally improved convergence speed. They also recommended a
50 to 100 ns equilibration for each window. It is clear from the aforementioned studies
that there is no established methodology in the literature regarding the convergence of per-
meation studies. Therefore, the results of the approach introduced in this dissertation can
provide researchers with an extra insight on this crucial parameter.
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5.1.2.2 Convergence with the z-constraint

Applying the cumulative sets method to the four permeants examined with the z-constraint
method and both membranes produced the results of figure 5.3. The cumulative sets vary in
size based on the total simulation time. In all cases, curves converged qualitatively within
the first 3 cumulative sets. Quantitatively results vary depending on the system; ammonia
converged during the first 50 ns for both membranes, water converged faster for DOPC
(≈ 40 ns) than DOPC:DOPE (≈ 70 ns), fluoromethane converged faster for the mixture
(≈ 60 ns) than for DOPC (≈ 80 ns) and finally, carbon dioxide converged for both systems
at around 30 ns.

Figure 5.3: Convergence of ∆G profiles for all permeants and both membranes. Each
diagram shows two halves of the bilayer with the solid lines representing the pure DOPC
systems and the dashed lines representing the DOPC:DOPE systems. C.Set stands for
cumulative set and the larger the number the larger the cumulative set e.g., for the water-
DOPC system, C.Set 2 stands for the 0-20 ns set and C.Set 3 stands for the 0-30 ns set.
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5.1.2.3 Convergence with the z-restraint

Figures 5.4 and 5.5 show the evolution of the free-energy profile of the DOPC and DOPC:DOPE
(1:3) membranes and all permeants, for the z-restraint method. Generally profiles stabilise
between the 0-30 ns and 0-40 ns blocks. Initial blocks fluctuate more because the permeant-
membrane complex relaxes to accommodate the new restraint behaviour of the permeant.
Also, they are relatively more noisy than the latter blocks because the number of sampled
points is smaller. Nevertheless, even in the worst case of urea and the DOPC membrane,
the maximum ∆G fluctuation between the initial block of 0-10 ns and the stable block of
0-40 ns is ≈3 kcal mol−1 and localised only on the bilayer centre.

Figure 5.4: Convergence of ∆G for all permeants and the DOPC membrane

Qualitatively, profile fluctuations are more prominent in fluoromethane or carbon dioxide
but this is due to the small scale of the y-axis which amplifies the differences. Based on the
above, the first 30 ns of the production trajectories and outputs were discarded as further
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equilibration and the rest of the results presented in the following sections correspond to
the last 70 ns.

Figure 5.5: Convergence of ∆G for all permeants and the DOPC:DOPE(1:3) membrane

For most permeants the convergence was 10 to 15 ns faster through the pure DOPC than
through the mixture and the difference was particularly evident for the largest permeants,
phenol, benzoic acid, coumarin and paracetamol. However, the same or slower convergence
for the permeation through DOPC was observed for fluoromethane, carbon dioxide and
isopropanol. Slower convergence for bilayers of mixed composition has also been observed
in a study of Hong et al.255 where they examined the total time for complete mixing of
various lipids in symmetrical bilayers. They saw that the radial pair distribution function of
PE:PG and PC:cholesterol membranes was slower to converge than that of pure POPC.
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5.1.2.4 Effect of method on convergence speed

Comparison between the results of the two methods shows that generally the umbrella
sampling simulations converged faster than the z-constraint simulations. It is not possible
to conclude whether this is due to the faster GROMACS software or due to the difference
between constraining and restraining. The faster convergence of PMFs with the z-restraint
is in contrast to the findings of Paloncỳovà et al.252 who have observed a faster convergence
with the z-constraint method, especially when starting positions were obtained by unbiased
permeation simulations. However, in their work, the z-restraint positions were initiated by
a preceding pulling simulation, which for polar molecules like coumarin might carry along
a hydration shell of water molecules introducing bilayer deformations. This disadvantage
of initial steered MD has also been reported by Lee et al.138 who recommended building
the membrane around the permeant or insert the permeant in a perturbative fashion. The
method followed in this work was a combination of the latter recommendations in which the
permeants were inserted in each position directly followed by a minimisation/relaxation of
the whole structure, avoiding in this way violent membrane disruptions or unwanted shell
hydrations due to pulling.

The equilibration/convergence timings chosen in this dissertation (+30 ns) are among the
highest reported in the literature. It is noteworthy however, that Neale et al.149,150 have dis-
covered that umbrella sampling simulations suffer from systematic sampling errors risen
from previously unconsidered slow-converging degrees of freedom (DOF), orthogonal to
the typically chosen reaction coordinate (the distance between centres of masses). These
slower DOFs might involve, among others, the lateral organisation of the lipids and per-
meants’ conformational changes, especially when intramolecular hydrogen bonds can be
formed110,250,256. Regarding the former, the membranes used in this work were taken pre-
equilibrated for 1 µs ensuring converged dynamics. Regarding the latter, the extra 30 ns
equilibration per window is considered sufficient for the exploration of the examined small
molecules conformational changes. Finally, while urea, glycine, benzoic acid and paraceta-
mol can form internal hydrogen bonds, it is not possible to estimate if there is an underlying
DOF delaying true convergence as the presented results in figures 5.4 and 5.5 quickly sta-
bilise for both membranes.
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5.1.3 Establishing a diffusion calculation technique for the z-restraint
method

In order to evaluate the best method for the calculation of the local diffusion coefficients
for the z-restraint method, a test case of the DOPC membrane and the water molecule was
examined with both the Hummer23 (equations 2.56 and 2.57) and the Zhu and Hummer24

(equations 2.56 and 2.58) methods.

5.1.3.1 Hummer method

The method proposed by Hummer requires the calculation of the integrated autocorrelation
function τ of the z-axis distance between the permeant and the membrane’s centre of mass,
for each 10 ns part of the z-position timeseries (7 in total from 30 ns to 100 ns). While
the computation of the autocorrelation function is trivial due to pre-existing numerical li-
braries, the calculation of the integral poses a challenge. A practice that has been used
previously247,253 involves the fitting of a double exponential function to the autocorrela-
tion of the z-axis distance. Unfortunately, when it was attempted to fit a double exponential
function to different 10 ns autocorrelation values of the z-axis distance, the fitting failed par-
tially or completely (figures 5.6a, 5.6b and 5.6c). Reduction of the autocorrelation datasets
from 10 000 to 1000 did not improve the overall poor performance of the fitting (figures
5.6d, 5.6e and 5.6f).

O’Neill et al.257 have examined an alternative technique for the calculation of the autocor-
relation function integral. Instead of fitting, they used 4 different cut-offs in order to decide
the integration domain (the length of the autocorrelation dataset), which was then integrated
numerically with the trapezoidal rule. In the first cut-off, the entire autocorrelation dataset
was considered for the integral, the second included the values until the global minimum
of the negative values, the third included the values until the first time that autocorrelation
became zero and finally the fourth took into account all values until when autocorrelation
became smaller than 1/e. Table 5.2 presents the results for the DOPC-water system, for 4
different distances from the bilayer core and for the 4 different techniques.

When considering the whole extend of the autocorrelation (9999 points for a 10 ns time-
series) the calculated diffusion coefficients were nonphysical, due to the long oscillatory
behaviour of the decay tail. The fourth method overestimated diffusion coefficients espe-
cially in the hydrophobic region of the bilayer, that for water are usually much smaller249,258

than 1 cm s−2. Also, for fast decaying autocorrelations, the 1/e criterion was very high and
was a potential source of error. Finally, the other 2 methods produced similar, physically
plausible values, however, in cases where the autocorrelation never becomes negative or it
has multiple minima, the ACF = ACFmin criterion becomes problematic.

In order to examine whether the fitting performance would be better for a smaller autocorre-
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(a) 10 ns. Complete failure. (b) 10 ns. Missed initial part.

(c) 10 ns. Partial fit through initial part. (d) 1 ns. Partial fit through initial part.

(e) 1 ns. Negative-positive fluctuation. (f) 1 ns. Complete failure.

Figure 5.6: Common problems encountered when attempting to fit a double exponential
function to a 10 ns or a 1 ns part of the clean z-distance autocorrelation. The system is the
DOPC-water and the autocorrelation is between 90 ns to 100 ns.
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Table 5.2: Evaluation of the integral domain for the Hummer method based on the work of
O’Neill et al.257.

D [x10−5 cm2/s]

Integration domain z=0.1 nm z=1 nm z=2 nm 2.8 nm

x = xmax 237305 504341 -198962 151866
x at ACF = ACFmin 2.06 0.15 0.8 4.26

x at ACF = 0 1.48 0.13 0.53 3.38
x at ACF = 1/e 3.98 1.63 2.31 4.59

lation dataset, the x at ACF = 0 criterion was used in conjunction with a double exponential
fitting. Figure 5.7 shows that with a smaller number of points, the fitting behaviour im-
proved, however, the computed diffusion coefficients were orders of magnitude lower than
expected.

(a) 1 nm. Lost initial part. (b) 2 nm. Good fit. Wrong D.

Figure 5.7: Fitting of a double exponential function to a filtered z-distance autocorrelation.
The system is the DOPC-water and the ACF is from 90 ns to 100 ns

In conclusion, regarding the Hummer method for the calculation of diffusion coefficients,
the integral domain for x at ACF = 0, with no fitting, is preferred for its robustness and
general applicability independent of the ACF behaviour.

5.1.3.2 Zhu and Hummer method

The method from Zhu and Hummer24 was used in conjunction with the block averaging
method146 for each 10 ns part of the z-position timeseries, in order to compute the variance
of the mean as the square of the standard deviation. Figure 5.8a is a typical example of
the aforementioned behaviour; it shows how the standard deviation of the mean z position
reaches the plateau at 0.0014 nm, for the DOPC-water system, z=2 nm and the 40 ns to
50 ns part of the z-position timeseries.

It can be observed that the larger the block size, the larger the uncertainty of the standard
deviation. This is expected because as the block size increases, less blocked points will
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(a) The standard deviation of the mean for the 2 nm z position, between 40 ns to 50 ns, that is
calculated by block averaging. Each point refers to the respective set of points in figures 5.8b and
5.8c.

(b) Local diffusion coefficient from smaller block
sizes.

(c) Local diffusion coefficient from larger block
sizes

Figure 5.8: The effect of the block size in the robustness of the Zhu and Hummer method.
The results presented here are for the DOPC membrane and the water molecule. The blue
rectangle in figures 5.8b and 5.8c refer to the results of figure 5.8a.
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exist to calculate the statistics e.g., for a 10 ns part of 10 000, 1 ps samples, a block size of
500 creates 20 blocks while a size of 2000 creates only 5 points. In total 5096 block size
evaluations were needed for the total work presented in this dissertation (26 systems x 28
positions x 7 timeseries parts), which made manual judgement inefficient if not impossible.
Unfortunately, setting an automatic converging criterion based on the derivative of the block
size curve or simply on the absolute difference between standard deviations, did not work.
The reason was that different systems behaved qualitatively similar but not identical which
led to many misjudgements. To overcome the automation problem, it was decided to set a
de facto block size for all cases.

In order to identify the default block size, the diffusion coefficients were calculated for the
whole DOPC-water system for the first eight block sizes (25, 50, 100, 125, 250, 500, 1000
and 2000 ps). As it can be seen by figure 5.8a, after 100 ps the standard deviation reaches
a plateau indicating that after that time, z-position points are no longer correlated. Figures
5.8b and 5.8c present the computed diffusion coefficients for each of the block size. For the
small block sizes of 25, 50, 100 and 125 ns the results are qualitatively identical. However,
in areas of higher diffusion such as close to the bilayer centre and above the polar/apolar
interface, the size of the block alters the diffusion values e.g., the diffusion at the bilayer
centre with the 25 ps block is almost double than the one from 125 ps. Another important
observation is that from block size 250 ps (N=5) and larger, the calculation of the diffusion
is very unpredictable and diverges in z positions above the polar/apolar interface where the
diffusion of water is faster. These aforementioned inconsistencies are very problematic as
they indicate a strong relationship of the method’s robustness to a highly varying parameter
such as the block size. For the test case presented here, the best results in terms of stability
were obtained for the 100 or 125 ps (N=3 or N=4) block size.

5.1.3.3 Method selection

Figure 5.9 shows the diffusion coefficients for DOPC and DOPC:DOPE(1:3) for the water
molecule and the most robust parameters of both methods. The Hummer method pre-
dicts the same water diffusion in the hydrophobic core of both membranes and apart from
a peak in the z=2.3 nm for the DOPC membrane, the diffusion is also similar in the hy-
drophillic part of the membranes. The Zhu and Hummer method predicts for both mem-
branes the same diffusion for the upper and lower part of the fatty acids, however devi-
ations are larger in the bilayer centre (z=0) and in the water region (z=2.8 nm). Espe-
cially the latter is unexpected considering that the water permeant should behave with a
similar way in the water region regardless of the membrane composition, which happens
only for the Hummer method and not for the Zhu and Hummer. Furthermore, a huge dis-
crepancy between the methods is observed on the computed local diffusion coefficient in
the water region. The Hummer method predicts a local diffusion coefficient of approx-
imately 3 × 10−5 cm2 s−1 for both membranes, while the Zhu and Hummer varies from
7 × 10−5 cm2 s−1 to 10 × 10−5 cm2 s−1. The experimental259 self-diffusion coefficient of wa-
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ter for 298 K and 1 atm is 2.3 × 10−5 cm2 s−1 and for TIP3P260 is 5.2 × 10−5 cm2 s−1 due to
the low viscosity of this particular water model261.

Figure 5.9: Local diffusion coefficients comparison for the two examined membranes and a
water permeant. H refers to the Hummer method and Z&H refers to the Zhu and Hummer
method.

In this dissertation a thorough analysis of both the Hummer method and the Zhu and Hum-
mer technical sensitivities is presented for the first time. Especially in regards to the former,
from the presented analysis it is clear that fitting of the ACF is a prone-to-failure technique
due to the sensitivity to ACF decay rate and oscillatory behaviour, which anyway changes
for each solute and position. Therefore, fitting of the ACF cannot be entirely automated and
thus can not be part of a high throughput drug selection process. Even direct integration
of the ACF is prone to error based on the selected integration domain as it was seen in this
work and previous23. Considering the lack of robustness of the Zhu and Hummer method,
as well as the larger deviation from experimental and simulation predictions for the water
diffusion, the Hummer method with the integral domain up to the first zero crossing of the
ACF was chosen as the methodology to compute the local diffusion coefficients for the rest
of the systems.
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5.2 Free-energy profiles

5.2.1 Free-energy profiles with the z-constraint

The z-constraint free-energy profiles for all molecules and both the pure DOPC and the
DOPC-DOPE membranes are presented in figure 5.10. In regards to the comparison be-
tween the membranes, the results are very similar for the hydrophillic and upper hydropho-
bic regions of the bilayer. In the bilayer centre however, no clear trend can be observed due
to the addition of DOPE lipids. For water, the free-energy curve of DOPC is higher, for
ammonia is lower and for fluoromethane and carbon dioxide the results are the same since
the standard errors (transparent regions) mostly overlap.

Figure 5.10: ∆G comparison between the pure DOPC membrane and DOPC:DOPE mem-
brane for the z-constraint method.

Regarding the permeation behaviour, ammonia and water that are both hydrophillic molecules,
experience an increase in the free-energy as they penetrate deeper in the hydrophobic part of
the bilayer. As they reach closer to the bilayer centre the profiles form a plateau, for ammo-
nia at 4 kcal mol−1 (DOPC) and 5 kcal mol−1 (DOPC:DOPE) and for water at 7.9 kcal mol−1

(DOPC) and 9 kcal mol−1 (DOPC:DOPE). Fluoro-methane and carbon dioxide have a small
positive peak in the hydrophillic region and then their profiles oscillate around zero with
the mean just in the negative side of the axis.
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5.2.2 Free-energy profiles with the z-restraint

The z-restraint free-energy profiles ∆G(z) for the examined 13 molecules through the pure
DOPC and DOPC:DOPE(1:3) bilayers are shown in figure 5.11. Initially, permeants can
be separated in three distinct categories depending on where they exhibit the minimum of
their free-energy difference. This minimum value shows the location where the molecules
preferentially partition.

(a) DOPC membrane (b) DOPC:DOPE(1:3) membrane

Figure 5.11: ∆G comparison of all permeants per membrane. Colours in legend are sorted
by ascending molecular weight.

In the first category, the free-energy difference is always positive along the bilayer and the
minimum position corresponds to the reference point for ∆G(z) = 0 in the water phase.
This is a typical characteristic of the polar hydrophilic ammonia, glycine, urea and water,
indicating that their preferred location of accumulation is not inside the bilayer a behaviour
that is expected given the hydrophobic nature of the bilayer core.

In the second category, the profiles have a small positive peak in the lipid head region, then
exhibit a negative global minimum in the polar/apolar interface and finally a larger positive
peak in the hydrophobic core. Coumarin for the DOPC membrane, ethanol and isopropanol,
clearly belong to this category, with five more molecules exhibiting minor deviations from
this behaviour. Benzoic acid has a peak in the hydrophobic core but is negative in value.
Also, coumarin for the DOPC:DOPE(1:3) membrane, as well as paracetamol and phenol
for both membranes, do not have a positive barrier in the head region. Fluoromethane has a
positive peak in the head region, a global minimum in the interface, a second positive peak
close to the hydrophobic core and then for the DOPC membrane the profile is marginally
positive, while for the DOPC:DOPE(1:3) membrane the profile is marginally negative. All
these molecules have an amphiphatic nature and under physiological conditions they would
partition in the polar/apolar interface262,263, therefore the free-energy profiles predict the
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expected behaviour.

In the third category, carbon dioxide and propane, both hydrophobic, have a small positive
peak in the lipid head region and then remain negative with the global minimum value
located in the bilayer centre, corresponding to their preferred partitioning position.

Figure 5.12: ∆G comparison between the DOPC and DOPC:DOPE membranes for the
z-restraint method

Permeants can be further classified by examining the effect of DOPE lipids on the transfer
process (figure 5.12). In the first group, comprising ammonia, glycine, urea and water, the
free-energy profile of the PC:PE mixture is the same or higher than the DOPC profile, across
the whole bilayer depth. This is an indication that the addition of DOPE lipids inhibits the
permeation process, in parts or across the entire bilayer. For the second group of carbon
dioxide, ethanol, paracetamol and phenol, a lower PC:PE mixture profile is observed in the
head group area but a higher PC:PE profile is observed in the interface and hydrophobic
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core area. Isopropanol and fluoromethane, have a slight deviation from this behaviour by
having a marginally lower peak in the PC:PE bilayer core than in the pure PC membrane.
Benzoic acid, coumarin and propane, form the third group where the PC:PE mixture profile
is the same or lower than the DOPC profile all across the bilayer. Table 5.3 shows the
summary of permeants classification depending on their free-energy difference profiles.

Table 5.3: Permeants classification based on their free-energy profile. “tails” refers to the
lipid tails region and “head” refers to the lipid headgroups region.

Partitioning area

Observed ∆G Bulk water Lipid headgroups Lipid tails

∆GPC:PE ≥ ∆GPC

Ammonia
Glycine
Urea
Water

∆Gtails
PC ≤ ∆GPC:PE ≤ ∆Ghead

PC

Ethanol
Fluoromethane∗†

Isopropanol†

Paracetamol∗

Phenol∗

Carbon dioxide

∆GPC:PE ≤ ∆GPC
Benzoic acid∗

Coumarin∗
Propane

∗ permeant exhibits minor deviation from the definition of partitioning area category
† permeant exhibits minor deviation from the definition of PC:PE effect group

5.2.3 Validation and comparison between the methods

The free-energy profiles presented for both methods in the previous sections are in good
qualitative agreement with previous studies of the same permeants and the same or differ-
ent PC and PE lipids139,210,218,248–250,254,264. In particular, they all fit in the categories that
were introduced by Neale et al.151 who classified over 200 PMFs of more than 100 small
molecules from the literature.

Direct comparison between the profiles of the two methods shows that while there are qual-
itatively the same, the are quantitative variations that lead to opposite interpretation. Am-
monia in DOPC has an energy barrier in the bilayer centre of approximately 5 kcal mol−1

for both methods. The barrier however for the DOPC:DOPE membrane is lower with the
z-constraint method and higher for the z-restraint. Water profiles are lower for both mem-
branes in the z-restraint method but there is no discrepancy in terms of barrier height. For
fluoromethane and carbon dioxide, the z-constraint profiles of the PC:PE membrane are
lower than DOPC across the whole monolayer in disagreement to the z-restraint results.
Previous comparative studies between the two methods252,265 have suggested that the z-
restraint and z-constraint methods should provide the same results, however the latter might
be faster and more robust. In this work however, the z-restraint method not only produced
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faster and more converged free-energy profiles (smaller error bars), but also results that can
be explained by the physical properties of the bilayers (see section 5.8).

5.3 Local diffusion profiles

5.3.1 Local diffusion with the z-constraint

Figure 5.13 shows the local diffusion profiles calculated with equation 2.54. The results
between the two membranes are the same both qualitatively and quantitatively. All per-
meants present a higher diffusion in the centre of the bilayer than in any other region and
quantitatively the values for ammonia and water in that region are 2 times higher. In the
rest of the bilayer, permeants reach a plateau between 0.2 × 10−5 and 0.45 × 10−5 cm2 s−1.

Figure 5.13: Local diffusion coefficients comparison between the pure DOPC membrane
and DOPC:DOPE membrane for the z-constraint method.

5.3.2 Local diffusion with the z-restraint

Figure 5.14 shows the local diffusion coefficients of all permeants, sorted based on their
molecular weight, for the DOPC (figure 5.14a) and the DOPC:DOPE(1:3) (figure 5.14b)
membranes. In both membranes all permeants exhibit the same qualitative behaviour; in
the water region the diffusion is the highest, then it drops quickly close to 0 as permeants
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approach the hydrophobic lipid tails and finally increases again in the bilayer core, where
the lipid chains of the two monolayers interact. Quantitatively, for both membranes, dif-
fusion for heavier molecules, especially in the water region, is considerably slower e.g.,
paracetamol has 10 times slower diffusion in water than ammonia.

(a) DOPC (b) DOPC:DOPE (1:3)

Figure 5.14: Comparison of local diffusion coefficients between permeants. Error bars are
omitted for clarity.

In regards to the effect of DOPE lipids, as can be seen by figure 5.15, there are no signifi-
cant differences between the two examined membranes. For benzoic acid, fluoromethane,
paracetamol and phenol, the peak in the bilayer core is marginally higher for the PC:PE
mixture. Also, for all molecules, the PC profile is slightly higher in the head region than the
PC:PE profile which tends to equalise towards the water region. This is counter-intuitive as
generally choline is bulkier than ethanolamine and one would expect that the diffusion of
permeants would be higher for the PC:PE bilayer. A possible explanation is that the PC:PE
bilayer has higher thickness than the DOPC22 (≈ 4%), thus the permeant will leave the
head group region a bit higher than in the DOPC and therefore the diffusion profile will be
slightly shifted outwards (to the right side of the figures).

5.3.2.1 DOPC diffusion profiles oscillations

It has been noticed from previous studies139,248,249,253,266,267 that local diffusion profiles are
more noisy than the respective free-energy difference profiles. In this study, this behaviour
is predominant in the DOPC rather than the PC:PE profiles. Especially for water, flu-
oromethane, propane, urea, isopropanol and benzoic acid there is an protruding peak at
2.3 nm away from bilayer centre, which has not been observed in past studies. Figure 5.16
shows the restrained z-position timeseries that the simulation for the DOPC-water system
produced for two different positions, 1.8 nm and 2.3 nm. In the 2.3 nm timeseries (orange
line) there is a highly oscillatory behaviour between 55 ns and 75 ns where the water perme-
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Figure 5.15: Comparison of local diffusion coefficients between membranes. The standard
error is represented with a semi-transparent area above and below the line of the average.
In most cases, the standard error is smaller than the thickness of the line.
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ant moved further than the typical ±0.15 nm from the average position. Figure 5.17 shows
4 trajectory (sampling every 10 ps) snapshots from this time range. Apart from random
crosses through the periodic boundary conditions (figure 5.17b), no obvious facilitators or
bilayer structural irregularities were observed to explain this behaviour.

Figure 5.16: The restrained z-position timeseries for the z=1.8 nm and z=2.3 nm positions
and the DOPC-water system. Also, the effect of applying an ‘exclude-outliers’ filter in the
z=2.3 nm timeseries.

To examine whether manual removal of extreme outliers of the timeseries would improve
the diffusion results, a filter was applied to the data to discard all z-restraint position that
were deviating more than ±0.15 nm from the average position. Figure 5.16 shows the effect
of the filter on the 2.3 nm timeseries and table 5.4 presents the diffusion coefficients and the
percentage of timeseries that were outliers for three representative timeseries. Overall, for
the cases that the rejection percentage was low, the effect on diffusion was marginal. In the
case of z=2.3 nm, diffusion was reduced by ≈ 18%, however, even with the filter applied
the diffusion value was still higher than in the neighbouring points. Considering that a
filter can introduce other biases or artifacts on the results, it was decided not to implement
filtering on the calculation of diffusion coefficients. For the rest of this dissertation, the
results presented will be based on the unfiltered timeseries.

5.3.3 Comparison between the methods

Computing the local diffusion coefficients required for the calculation of the permeation
coefficient was the most challenging part of the analysis process. In fact the determination
of a robust and accurate method to calculate local diffusivity profiles is still a very active
research field268–271. The results of the z-constraint method did not reproduce diffusion
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(a) 55.46 ns (b) 57.07 ns

(c) 62.49 ns (d) 70.00 ns

Figure 5.17: Trajectory snapshots of DOPC-water system during the time that high fluctua-
tions of the permeant position were recorded. The water molecule is represented by the van
der Waals red sphere representing oxygen. The rest of the water molecules are transparent
lines.

Table 5.4: Effect of an ‘exclude-outliers’ filter in the diffusion coefficients. The outliers
value shows the percentage of data that were discarded from the original timeseries.

D [x10−5 cm2/s]

z [nm] Original Filtered Outliers

1.8 0.4 0.4 0.6%
2.2 1.5 1.5 0.7%
2.3 2.7 2.2 1.7%
2.4 1.5 1.5 0.3%
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profiles of previous studies neither quantitatively nor qualitatively. While the cause of this
is not apparent, it can be attributed to the dependence of diffusion to the integral of the
ACF of the extremely oscillatory constraint force. While the z-restraint, undergoes similar
calculations, it was shown that apart from specific cases (section 5.3.2.1), the restraint posi-
tion remains relatively stable. Overall, the z-restraint method achieved better and produced
more accurate local diffusion coefficients.
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5.4 Local resistance profiles

5.4.1 Local resistance with the z-constraint

According to the inhomogeneous solubility-diffusion model (equation 2.47), the local re-
sistance is proportional to the exponential of the free-energy difference and inversely pro-
portional to the local diffusion coefficient. Figure 5.18 shows the resistance profiles for
the z-constraint method. It is clear that for hydrophillic molecules the higher resistance in
permeation is in the bilayer centre, while for fluoromethane and carbon dioxide it is located
in the headroup region.

Figure 5.18: Local resistance profiles with the z-constraint method.

89



Chapter 5. Results and discussion

5.4.2 Local resistance with the z-restraint

Figure 5.19 displays the resistance profiles for both membranes and all permeants for the
z-restraint method. Carbon dioxide and propane, both hydrophobic molecules, experi-
ence higher permeation resistance in the hydrophillic region of the bilayer. Hydrophillic
molecules (ammonia, glycine, urea and water), experience the highest resistance in the
bilayer core. Amphiphillic molecules are characterised by two peaks in their resistance
profiles. The first exists in the hydrophillic area of the bilayer indicating a permeation bar-
rier of the hydrophobic part of the permeant as it dissolves inside the hydrophillic region of
the bilayer. The second exists in the lower chains region and the bilayer core indicating a
resistance in permeation of the hydrophillic part of the permeant in the hydrophobic region
of the bilayer.

Figure 5.19: Local resistance profiles with the z-restraint method.

The effect of the lipid composition depends on the hydrophillicity of the permeants. The
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DOPC:DOPE (1:3) bilayer profile has higher resistance profile for hydrophillic permeants,
especially in the lipid chains region. For hydrophobic molecules the resistance is marginally
higher in the polar region of the DOPC:DOPE (1:3) bilayer but it is unaffected in the rest.
Finally, for the amphiphillic permeants, the DOPC:DOPE (1:3) membrane has lower re-
sistance in the bilayer centre, higher resistance in the polar part and the 0.5 nm to 1.5 nm
regions, and the same resistance in the other regions. Coumarin is an exception as the
resistance is lower along the whole apolar part of the bilayer.

5.4.3 Free-energy and diffusion contributions on resistance

From figures 5.18 and 5.19 it is clear that both methods produced resistance profiles which
despite some deviations are qualitatively similar to the free-energy profiles. These subtle
deviations are due to the diffusion behaviour and are apparent in all profiles. For example,
in the z-restraint method, ammonia has a monotonically increasing PMF which reaches a
plateau in the bilayer centre. At the same time, diffusion is monotonically decreasing until
0.5 nm away from bilayer centre where it starts increasing. This enhanced diffusion is no-
ticeable in the resistance profile with a drop in the bilayer centre region. These observations
have been reported also in previous permeation studies195,247.

Furthermore, the differences due to the subtle but important effect of diffusion manage
to alter the relative resistance between the DOPC and DOPC:DOPE membrane for some
permeants. In particular, resistance to permeation of both membranes to ammonia, urea,
glycine and phenol becomes equal or higher for DOPC in the bilayer centre, although the
PMF is clearly higher in the same region for the mixture. In other cases e.g., for water,
fluoromethane and benzoic acid, the differences between the membranes are amplified.
Also, comparison between the methods shows that the z-constraint results are generally in
the same or 1-2 orders of magnitude higher than the z-restraint.

Overall, the observation of the resistance profile is important for the determination of the
permeation mechanism. While the profile is predominantly affected by free-energy, diffu-
sion can clearly affect the magnitude of the resistance to permeation.

91



Chapter 5. Results and discussion

5.5 Permeation coefficients

5.5.1 Permeation with the z-constraint

The permeation coefficients of the 4 small molecules are presented on table 5.5 together
with their logarithm to base 10. First of all, these results are not in agreement to the initial
hypothesis that due to the increase in the chain region of the lateral pressure profile, the
permeation coefficient should reduce with the addition of nonlamellar DOPE lipids in the
membrane. Comparison of the logP indicates that permeation was hindered through the
DOPC:DOPE membrane only for water and was similar or faster for the rest, in contrast to
the hypothesis expectations. Also, the computed P and logP values are orders of magnitude
lower than previously reported experimentally and from simulation studies (see table 5.6).

Table 5.5: Permeation coefficients and their logarithm of base 10, through a DOPC and a
DOPC:DOPE(1:3) membrane, at T=300 K, for the 4 examined molecules.

DOPC DOPC:DOPE (1:3)

Permeant P
[
cm s−1

]
logP P

[
cm s−1

]
logP

Water (1.54 ± 0.35) × 10−11 −10.79 ± 0.40 (1.79 ± 0.34) × 10−12 −11.74 ± 0.35

Ammonia (1.69 ± 0.24) × 10−9 −8.77 ± 0.09 (4.23 ± 0.55) × 10−9 −8.37 ± 0.04

Fluoromethane (2.77 ± 0.86) × 10−7 −6.55 ± 0.31 (3.27 ± 0.92) × 10−7 −6.48 ± 0.26

Carbon dioxide (5.45 ± 0.49) × 10−7 −6.26 ± 0.25 (8.22 ± 0.90) × 10−7 −6.09 ± 0.17

The overall extremely low permeation coefficients of the z-constraint method can be ex-
plained by the combination of two factors, the overestimated free-energy profiles and the
very low local diffusion coefficients. This combination leads to increased resistance coeffi-
cients and as a consequence, orders of magnitude lower permeation.

5.5.2 Permeation with the z-restraint

The permeation values of the molecules examined with the z-restraint method are presented
in ascending permeability order in table 5.6 along with literature results for the same per-
meants. According to table 5.6 the permeation coefficients of the examined molecules
can be separated in two main groups when comparing between the two examined mem-
branes. The first group includes the molecules for which the permeation is slower through
the DOPC:DOPE membrane, which are urea (−41%), water (−27%), glycine(−69%), am-
monia (−71%), ethanol (−30%), isopropanol(−47%), phenol (≈ −52%) and carbon diox-
ide (≈ −30%). The second group includes the molecules with faster permeation through
the DOPC:DOPE membrane, such as fluoromethane (6%), benzoic acid (31%), paraceta-
mol (151%) and coumarin (219%). Finally, no difference in permeation was observed for
propane (≈ −0.6%).

In order to make comparisons between different molecules easier, the logarithms of base
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10 of the permeation coefficients, logP, are also presented in table 5.6 and figure 5.20. As
it can be seen from the latter, the majority of the permeants were on the right side of the
equality line, indicating a higher logP value through the DOPC membrane, a result that
was expected from the permeation coefficients. In fact, paracetamol and coumarin were
the farthest to the left compared to the equality line. Furthermore, most permeants had a
negative logP value with the most negative belonging to the 4 hydrophillic molecules (urea,
water, glycine and ammonia). On the contrary, propane and carbon dioxide that are both
hydrophobic, had the highest logP together with benzoic acid. The rest of the permeants
were on the -1 to 0.7 logP range.

Figure 5.20: Comparison of logP values between membranes. For clarity, error bars are
omitted.

Table 5.6: Permeation coefficients and their logarithm of base 10, for a DOPC and a
DOPC:DOPE(1:3) membrane, at T=300 K. PC refers to DOPC and PC:PE refers to
DOPC:DOPE(1:3).

This work Previous studies

P
[
cm s−1

]
logP Membrane P

[
cm s−1

]
logP Membrane

Urea
(6.74 ± 3.03) × 10−7 −6.17 ± 0.23 PC 5.37 × 10−7 −6.27 DMPC298 K

α, 254

(4.01 ± 1.95) × 10−7 −6.40 ± 0.25 PC:PE(1:3) 1.95 × 10−8 −7.71 Model SC310 K
α, 258

1.41 × 10−6 −5.85 DOPC303 K
β, 121

4.00 × 10−6 −5.40 DMPC β, 272

4.56 × 10−6 −5.34 Caco-2310 K
β, 273

Continued on next page

α: MD simulation, β: Experimental study, γ: Theoretical model, δ: Monte Carlo simulation
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Table 5.6 – continued from previous page

This work Previous studies

P
[
cm s−1

]
logP Membrane P

[
cm s−1

]
logP Membrane

Water
(3.96 ± 0.39) × 10−4 −3.40 ± 0.05 PC 6.80 × 10−2 −1.17 DMPC320 K

α, 204

(2.89 ± 1.50) × 10−4 −3.54 ± 0.27 PC:PE(1:3) 4.00 × 10−2 −1.40 DPPC320 K
α, 204

1.30 × 10−2 −1.89 DPPC310 K
δ, 274

1.60 × 10−2 −1.80 DPPC323 K
α, 131

7.00 × 10−2 −1.15 DPPC350 K
α, 134

1.40 × 10−3 −2.85 DMPC CG303 K
α, 139

1.58 × 10−2 −1.80 DOPC303 K
β, 208

1.30 × 10−2 −1.89 POPC303 K
β, 208

6.47 × 10−3 −2.19 POPC308 K
α, 270

8.30 × 10−3 −2.08 DMPC303 K
γ, 275

2.40 × 10−2 −1.62 DMPC303 K
β, 121

1.90 × 10−2 −1.72 DPPC303 K
β, 121

1.50 × 10−2 −1.82 DOPC303 K
β, 121

1.22 × 10−2 −1.91 DOPC298 K
β, 115

7.40 × 10−3 −2.13 DOPC:DOPE298 K
β, 115

4.26 × 10−3 −2.37 DOPC294 K
β, 276

5.20 × 10−4 −3.28 DMPC343 K
β, 203

2.30 × 10−6 −5.64 DMPE343 K
β, 203

3.00 × 10−4 −3.52 DPPC343 K
β, 203

3.70 × 10−6 −5.43 DPPE343 K
β, 203

6.00 × 10−4 −3.22 DMPC f luid
β, 277

2.30 × 10−4 −3.64 DOPC293 K
β, 277

1.50 × 10−2 −1.82 DLPC298 K
β, 278

3.40 × 10−3 −2.47 EPC298 K
β, 279

2.20 × 10−3 −2.66 EPC298 K
β, 113

1.90 × 10−3 −2.72 EPC298 K
β, 280

1.36 × 10−2 −1.87 POPC298 K
β, 281

Glycine
(2.05 ± 0.80) × 10−3 −2.69 ± 0.20 PC 5.70 × 10−12 −11.24 EPC β, 282

(6.38 ± 1.67) × 10−4 −3.20 ± 0.14 PC:PE(1:3) 2.00 × 10−11 −10.70 DMPCβ, 282

3.00 × 10−7 −6.52 SC β, 283

Paracetamol
(3.76 ± 1.17) × 10−3 −2.42 ± 0.16 PC 7.30 × 10−6 −5.14 Permeapad310 K

β, 284

(9.44 ± 5.10) × 10−3 −2.03 ± 0.28 PC:PE(1:3)
Ammonia

(6.58 ± 1.57) × 10−3 −2.18 ± 0.12 PC 1.30 × 10−1 −0.89 POPC300 K
α, 210

(1.91 ± 0.26) × 10−3 −2.72 ± 0.07 PC:PE(1:3) 1.70 × 10−2 −1.77 POPE300 K
α, 210

1.30 × 10−1 −0.89 DOPC300 K
α, 218

9.00 × 10−1 −0.05 DPPC350 K
α, 264

1.30 × 10−1 −0.89 EPC298 K
β, 279

4.80 × 10−2 −1.32 DPhPC β, 285

3.70 × 10−2 −1.43 EPC β, 286

Ethanol
(1.55 ± 0.24) × 10−1 −0.81 ± 0.08 PC 8.50 × 10−2 −1.07 POPC323 K

α, 287

(1.08 ± 0.32) × 10−1 −0.97 ± 0.15 PC:PE(1:3) 1.12 × 10−5 −4.95 Model SC310 K
α, 258

2.00 0.30 POPC308 K
α, 269

3.80 × 10−5 −4.42 SOPC298 K
β, 288

2.75 × 10−7 −6.56 SC γ, 289

Isopropanol
(6.27 ± 1.75) × 10−1 −0.20 ± 0.15 PC
(3.34 ± 0.68) × 10−1 −0.48 ± 0.11 PC:PE(1:3)

Coumarin
1.14 ± 0.31 0.06 ± 0.14 PC 1.50 × 10−4 −3.82 Caco-2310 K

β, 290

3.62 ± 0.48 0.56 ± 0.07 PC:PE(1:3) 7.76 × 10−5 −4.11 Caco-2310 K
β, 291

3.58 × 10−6 −5.45 Pig skin310 K
β, 292

Fluoromethane
3.86 ± 0.45 0.59 ± 0.06 PC

Continued on next page

α: MD simulation, β: Experimental study, γ: Theoretical model, δ: Monte Carlo simulation
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Table 5.6 – continued from previous page

This work Previous studies

P
[
cm s−1

]
logP Membrane P

[
cm s−1

]
logP Membrane

4.07 ± 0.53 0.61 ± 0.07 PC:PE(1:3)
Phenol

5.03 ± 1.04 0.70 ± 0.11 PC 2.57 0.41 Model SC310 K
α, 258

2.40 ± 0.59 0.38 ± 0.13 PC:PE(1:3) 5.42 × 10−6 −5.27 SC310 K
β, 293

Benzoic Acid
6.27 ± 1.57 0.80 ± 0.13 PC 2.82 0.45 DMPC298 K

α, 254

8.19 ± 0.85 0.91 ± 0.05 PC:PE(1:3) 4.40 × 10−5 −4.36 DOPC β, 154

1.20 × 10−7 −6.92 DOPC298 K
β, 220

1.11 × 10−6 −5.95 DOPE298 K
β, 220

5.50 × 10−1 −0.26 EPC298 K
β, 279

Propane
7.33 ± 1.49 0.86 ± 0.11 PC
7.28 ± 0.86 0.86 ± 0.06 PC:PE(1:3)

Carbon dioxide
10.00 ± 1.2 1.00 ± 0.06 PC 3.00 0.48 POPC:POPE300 K

α, 210

7.02 ± 0.56 0.85 ± 0.04 PC:PE(1:3) 3.20 0.51 DPhPC298 K
β, 294

3.20 × 10−1 −0.49 EPC296 K
β, 295

α: MD simulation, β: Experimental study, γ: Theoretical model, δ: Monte Carlo simulation

5.5.2.1 Statistical significance of differences between membranes

In order to evaluate whether the predicted logP differences between the two membranes are
statistically significant, a hypothesis test was performed in two different permeant groups,
those with molecular weight smaller than 100 g mol−1 and those with molecular weight
larger than 100 g mol−1. The null hypothesis stated that the difference of the logP values
between the membranes was zero and the alternative hypothesis stated that the difference
was negative, indicating smaller logP values for the DOPC:DOPE (1:3) membrane.

To perform the hypothesis test, a 1-tail paired t-test for each group was used. Table 5.7
shows the statistics of the test while the tables of the t-test analysis are presented in appendix
B. For molecules with molecular weight lower than 100 g mol−1, the mixed DOPC:DOPE
bilayer showed a statistically significant reduction in permeation (one-tailed paired t-test
probability p(x > 0) = 0.0019, x = ∆logP), while the three drugs with molecular weight
higher than 100 g mol−1 showed a statistically significant increase in permeability (one-
tailed paired t-test probability p(x < 0) = 0.0496, x = ∆logP). The statistical significance
is expected to be even higher (lower p value) for the permeation coefficients instead of the
logP, which tends to “dampen” the differences. However, such a comparison is not possible
because permeation coefficients vary orders of magnitude between molecules.

5.5.2.2 Validation of results

The results of this study are, in most cases, in agreement or within 1-2 order of magni-
tude with the permeation and logP values found in the literature. While for most cases
permeation coefficients existed for similar lipid membranes, in some cases when data were
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Table 5.7: Hypothesis test statistics for the comparison of ∆logP for the two different per-
meant groups. ∆logP = logPDOPC:DOPE − logPDOPC. MW stands for molecular weight in
g mol−1.

Statistics MW<100 MW>100

∆logP mean -0.230 0.340
∆logP standard deviation 0.188 0.201

Hypothesised mean (h): 0 0
One-tailed probability p(h<x): 0.0019 0.950
One-tailed probability p(h>x): 0.998 0.0496

unavailable, free-energy profiles from the literature were used to assess the findings. In the
following paragraphs, each permeant is discussed separately.

Urea. The computed logP value of −6.17 for the DOPC membrane is close to the −5.85
for DOPC121 at 303 K and −6.27 for DMPC254 at 298 K found in the literature.

Water. Studies of water permeation have reported a plethora of results that vary greatly,
depending on the experimental and simulation protocols and lipid compositions. In gen-
eral, logP values of water are between −1.15 to −5.64 and computed logP values of −3.40
for DOPC and −3.54 for DOPE belong to the lower end of this range. Generally values
of this study are two orders of magnitude smaller than the DOPC and POPC permeation
coefficients of Mathai et al.208, Paula et al.121, Huster et al.115 and Koenig et al.281, one
order of magnitude smaller than those reported by Olbrich et al.276 and Comer et al.270 and
very close to the values of DOPC from Carruthers et al.277 and DMPC/DPPC of Jansen and
Blume.203

Glycine. Chakrabarti et al.282, reported a logP of −10.7 through large unilamellar vesicles
of DMPC, which is much smaller than the computed logP of DOPC.

Ammonia. Present MD simulations underestimated the permeation coefficients of ammo-
nia in comparison to the rest of the literature. In comparison to studies of similar lipid com-
positions, the values presented here are 1 to 2 orders of magnitude smaller than the POPC,
POPE and DOPC MD simulations of Hub et al.210 and Zocher et al.218. The discrepancy
with both studies can be explained by the difference in the force fields used (Burger for
lipids, OPLS for ammonia and TIP4P for water).

Ethanol. Literature values varied over 6 orders of magnitude and they were mostly nega-
tive apart from the simulation work of Comer et al.269 that reported a logP value of 0.30 for
POPC at T=308 K. Ghaemi et al.287 computed a logP of −1.07 for POPC at T=323 K which
is very similar to our values. The experimental work of Ly and Lango288, with SOPC, re-
turned a logP of −4.42 at room temperature. Further validation results were available from
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the works of MacCallum et al.296 and Carpenter et al.253 that studied the free-energy of
ethanol (Threonine,Thr, amino acid analog in the work of MacCallum et al.) permeating
through a DOPC bilayer. In both cases current findings are almost identical to theirs, qual-
itatively and quantitatively, with the small differences attributed to the different force-fields
used. Therefore it is expected that also the permeation coefficients would be very similar.

Benzoic Acid. Present results are in good agreement with the simulation work of Lee
et al.254 who computed a logP of 0.45 for DMPC at room temperature, similar to this
work 0.80 for DOPC. These coefficients are both many orders of magnitude higher than the
experimental findings for DOPC154,220 and DOPE220.

Carbon dioxide. The logP presented here is very similar to the one Hub et al.210 found
with MD simulations, for carbon dioxide permeation through a POPC:POPE bilayer.

Propane. While no reported permeation coefficients were found for propane, MacCallum
et al.296 have presented the free-energy profile of permeating propane, as an analog of the
amino acid Valine (Val). As with ethanol, the findings here are in excellent agreement
with theirs, observing the same −3.2 kcal mol−1 free-energy trough in the bilayer centre and
overall qualitative behaviour. Therefore, it is anticipated that the permeation coefficient
would also be identical.

Isopropanol, Fluoromethane. No computational or experimental results were found re-
garding the permeation of isopropanol or fluoromethane. This is the first work reporting
permeation coefficients for these two molecules.

Finally, for phenol, paracetamol and coumarin there are no literature permeation stud-
ies with similar lipid compositions, making a direct comparison inappropriate. However,
Paloncỳovà et al.252 have reported free-energy profiles of coumarin in a DOPC bilayer at
310 K that are qualitatively close to present findings, with a global minimum around 1.4 nm
and an energy barrier in the centre of the bilayer. However quantitatively, the results differ
considerably, possibly because of the difference in temperature and force field; they used
the united atom Berger FF for lipids and custom parameters for coumarin based on GRO-
MOS 53a6. In this study, the global minimum is −1.5 kcal mol−1, while they report a global
minimum of −5.7 kcal mol−1 to −6.7 kcal mol−1. Likewise, in the bilayer centre they report
a −3.5 kcal mol−1 to −4.1 kcal mol−1 negative peak in contrast to the positive 1.2 kcal mol−1

barrier that was found in this work. Therefore, the permeation coefficient for coumarin
from Paloncỳovà et al.252 would be probably a few orders of magnitude higher than the one
reported here.
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5.6 Overall comparison of the methods
In this dissertation two of the most commonly used methods to study passive permeation
with molecular dynamics simulations were used. In particular, both methods went under
extensive testing of their parameters in order to ensure the production of the most robust
and accurate options through the automated post-simulation analysis. Then, the methods
were compared on six different simulation aspects and results for all permeating molecules,
namely the computational efficiency, the convergence speed, the free-energy profiles, the
local diffusion coefficients, the local resistance profiles and the most important, the perme-
ation coefficients.

In regards to the computational efficiency, the z-restraint method in conjunction with the
GROMACS software was almost six times faster due to the more purpose-optimised soft-
ware but also the direct implementation of the tools to perform the permeation study. Con-
vergence of free-energy profiles was also faster with the z-restraint method, possibly due to
the same reasons, but also due to the fact that the main sampled variable for the z-restraint
method (the z-position) is generally more stable than the highly oscillatory instant con-
straint force Fz.

In regards to the free-energy and local diffusion profiles, z-restraint also performed better.
For the former, while the profiles were quantitatively similar, the values of the z-constraint
were generally higher than the z-restraint and previously reported values in the literature
indicating an overestimated barrier to permeation. In fact, for the latter, the profiles for
the z-constraint were also qualitatively nonphysical and quantitatively very low. Due to
these results, the produced resistance profiles were the same or higher for the z-constraint
results, following the trend of the dominant free-energy profiles compensated by the lower
diffusion.

Finally, as tables 5.5 and 5.6 show, the predicted values for the z-constraint are orders of
magnitude lower than the corresponding z-restraint and literature data. Based on these,
the z-restraint method is concluded to be the best of the two methods for these kind of
permeation studies. In the next sections, the results of the z-restraint simulations will be
further analysed to extract more useful information regarding the effect of DOPE lipids in
permeation.
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5.7 Further analysis of the z-restraint results

5.7.1 Hydrogen bonds

The average number of hydrogen bonds formed per frame (h.b.p.f.), is shown in figure 5.21
for all molecules and membranes. Each profile shows the total number of hydrogen bonds
formed at each position, which is further decomposed to the number of hydrogen bonds
formed between the permeant and either the bilayer or the solvent.

Figure 5.21: Comparison of hydrogen bonds formed per frame between membranes. The
standard error is represented with a semi-transparent area above and below the line of the
average.

Hydrogen bonds with the solvent are the predominant in comparison to the ones formed
with the bilayer, and generally decrease with the increased proximity to the bilayer centre
as also observed in previous studies137,263. It is noteworthy however, that hydrophillic and
amphiphillic molecules form hydrogen bonds with water almost right down to the bilayer
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core, showing the propensity of permeants to retain their hydration shell even deep into the
hydrophobic region297. With regards to quantitative comparison, the average number of
hydrogen bonds follows the expected pattern that arises from the ability of each permeant
to form hydrogen bonds, hydrophillic molecules formed more hydrogen bonds with water.

Hydrogen bonds with the bilayer can be split in two profile categories. For fluoromethane,
carbon dioxide, coumarin and ammonia/DOPC, they are very close to zero along the bi-
layer. For the rest, hydrogen bonds start to form around 0.1 nm to 0.5 nm, then reach a
maximum at 1.5 nm to 2.0 nm (of 0.4 h.b.p.f. for water, urea, glycine and paracetamol, of
0.2 for ethanol, isopropanol, phenol and benzoic acid, of 0.1 for ammonia/DOPC:DOPE)
and then fade back to zero in the solvent region.

In regards to the effect of DOPE, apart from ammonia, no significant difference was ob-
served in the hydrogen bond formations of the molecules with the bilayer between the
DOPC and DOPC:DOPE(1:3) membranes. In some cases, a marginal increase was ob-
served in the head region of the PC:PE, but this could also be attributed to the 4% increase
of thickness22. Furthermore, permeants formed marginally more hydrogen bonds with wa-
ter in the DOPC membrane. Overall, the lipid composition did not affect the total number
of hydrogen bonds formed between the permeants and their environment. The above ob-
servation is counter-intuitive because DOPE has an increased capability of hydrogen bond
formations, although two possible factors could explain this behaviour. On one hand, it is
possible that one permeant on its own per position is not enough to observe a significant
difference in the total numbers of hydrogen bonds, and maybe alternative methods with
more permeants per position could produce different numbers. On the other hand, it was
observed in the past that the extra PE hydrogen bonds are mostly formed between the rest
of the PC and PE headgroups or the solvent molecules and therefore the permeant could
possibly remain unaffected68.

It is important to mention that propane cannot form hydrogen bonds and is only presented
here as a validation that it did not; although very low, the h.b.p.f. values are not entirely
zero. This is due to the fact that the analysis code might have accidentally recognised a
non existent hydrogen bond based on the defined criteria. Furthermore, carbon dioxide has
been found to form weak hydrogen bonds despite the intuitive established opinion that it
generally cannot298, thus it is presented along the rest of the molecules. Finally, although
it is still an open question, there are published data that fluoromethane can form hydrogen
bonds299.
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5.7.2 Correlation of permeation to solute properties

The molecules examined in this work have a broad range of physicochemical properties
which are summarised in table 3.2. A very common measure of permeability that has been
used in the past and is also actively used in QSAR methods is the octanol/water partition
coefficient logPo/w

300,301. Figure 5.22 presents the correlations and linear regressions of
5 important properties of the permeants (the molecular weight, total number of hydrogen
bonds acceptors and donors, the topological polar surface area and a QSAR and experi-
mentally predicted logPo/w coefficients) to the logarithm of the computed permeation co-
efficients. Table 5.8 summarises the results of the correlation analysis where R represents
Pearson’s correlation coefficient and p the probability of the results not being correlated
based on a two-tail hypothesis t-test. The significance level α for rejecting the null hypoth-
esis (”there is no correlation”) was considered 0.05 and based on this, the critical value of
R above which correlation would exist was 0.553 for MW, HBAD, TPSA and CAxLogP
(13 samples per membrane) and 0.602 for ExpLogP (11 samples per membrane)302.

From figure 5.22 and table 5.8 it is clear that the molecular weight and number of hydrogen
bonds donors and acceptors do not correlate with the logP value for neither membrane. On
the contrary, TPSA and the octanol/water partition coefficients correlate with the perme-
ation, with the experimental partition coefficient having the best correlation (R=0.824 and
R=0.854). TPSA has a negative correlation meaning that as the polar surface increases,
the permeation drops. QSAR and experimental logPo/w results indicate that the permeation
increases almost linearly with the increase in lipophilicity, as it is expected from the litera-
ture300. Especially for the latter, the linear regression model is fairly accurate with an R2 of
≈0.7. In regards to the composition of the membranes, while no major effect is observed,
DOPC:DOPE results seem to correlate better with the experimental lipophilicity although
the change is not significant. Overall, although these MD results correlate well with the
logPo/w of the permeants, the use of the partition coefficient to assess permeation has been
questioned in the past, especially for permeation through the blood brain barrier modelled
as a DOPC bilayer253 and descriptors such as the blood brain partitioning (logBB) and the
permeability surface-area product (logPS) might be more accurate.

Table 5.8: Correlations between permeants physicochemical properties and the logarithm
of permeability logP.

MW HBAD TPSA CAxLogP ExpLogP
R p R p R p R p R p

DOPC 0.136 0.659 -0.501 0.081 -0.662 0.014 0.653 0.016 0.824 0.002

DOPC:DOPE 0.222 0.465 -0.493 0.081 -0.642 0.018 0.716 0.006 0.854 0.001
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(a) Molecular weight (b) Hydrogen bonds acceptors and donors

(c) Topological polar surface area (d) QSAR logPo/w

(e) Experimental logPo/w

Figure 5.22: Correlation analysis and linear regression for 5 physicochemical properties
and the logarithm of permeability logP.
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5.7.3 Lateral mobility

The last analysis test examined the lateral mobility of both the lipid molecules and the
permeant. For the former, a random lipid molecule was selected for each position and then
the mean square displacement (MSD) of its lateral movement was calculated. The lateral
diffusion coefficient was calculated then from the slope of the MSD and the average of
the 28 positions. Figure 5.23 shows the average lateral diffusion for all permeant systems
and for the DOPC and DOPE lipids in both membrane systems. The presented values for
DOPC and DOPE which are approximately 17 nm µs−1 are close to the higher end of the
previously reported range of values in the literature65,68,196,303–305 of 6 nm µs−1 to 17 nm µs−1

.

Figure 5.23: Lateral diffusion coefficients of the lipid molecules. Lines are plotted to guide
the eye.

Figures 5.24, 5.25 and 5.26 display the trajectories of the permeants over the 100 ns simu-
lations with the DOPC bilayer, in relation to the simulation box (dashed lines). Similarly,
figures 5.27, 5.28 and 5.29 present the permeant lateral mobility for the DOPC:DOPE bi-
layer. Different columns indicate different positions inside the bilayer and the rows are
sorted based on the molecular weight of the permeants starting from the lightest.

Regarding the mobility between different depths, it is generally observed that the permeant
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diffuses faster in the water region (2.7 nm), then in the bilayer centre, then in the headgroup
region (1.0 nm) and finally in the chain region (2.0 nm). These results are similar to the
computed local diffusion profiles (figure 5.15). Furthermore, the lateral mobility exhibits a
“rattle-in-a-cage” behaviour where the permeant is trapped locally in pockets of free vol-
ume accompanied by fast transitions to neighbouring pockets, in agreement with previous
reports266.

Finally, there is no significant difference in the plots in terms of membrane composition.
There seems to be a small increase in movement in the centre of the mixed bilayer which
could be rationalised by the small increase in thickness which could leave some more free-
space, although that could be compensated by the more ordered lipid chains.
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Figure 5.24: Lateral mobility of permeants in the DOPC membrane and in different depths;
part A. Dashed lines indicate the simulation box (≈6 nm × 6 nm).
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Figure 5.25: Lateral mobility of permeants in the DOPC membrane and in different depths;
part B. Dashed lines indicate the simulation box (≈6 nm × 6 nm).
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Figure 5.26: Lateral mobility of permeants in the DOPC membrane and in different depths;
part C. Dashed lines indicate the simulation box (≈6 nm × 6 nm).
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Figure 5.27: Lateral mobility of permeants in the DOPC:DOPE membrane and in different
depths; part A. Dashed lines indicate the simulation box (≈6 nm × 6 nm).
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Figure 5.28: Lateral mobility of permeants in the DOPC:DOPE membrane and in different
depths; part B. Dashed lines indicate the simulation box (≈6 nm × 6 nm).
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Figure 5.29: Lateral mobility of permeants in the DOPC:DOPE membrane and in different
depths; part C. Dashed lines indicate the simulation box (≈6 nm × 6 nm).
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5.8 Overall effect of DOPE lipids on permeation
Previous studies that examined lipid membranes of mixed lamellar/nonlamellar composi-
tions have shown that the addition of DOPE lipids to DOPC bilayers did not significantly
altered the bilayer structure and density22. However, while PC headgroups are bulky and
introduce repulsive forces, the smaller size of PE headgroups which also introduce attrac-
tive forces due to the ability to form hydrogen bonds with their neighbouring headgroups
and solvent, overall decreases the total area per lipid of the mixed bilayer22,68. These at-
tractive forces and smaller headgroup size is also responsible for the propensity of the PE
lipids to form inverse hexagonal phases which increases the spontaneous curvature of the
monolayers. The aforementioned effects are expressed with a hundreds of atmospheres de-
crease of the lateral pressure profile in the headgroup region and a corresponding increase
in the chain region of the bilayer which indicates an increase of the repulsive forces due to
the frustrated situation of the DOPE lipid tails22. The main hypothesis of this dissertation
is that this increase in lateral stresses should affect the passive permeation of molecules
through the bilayer and in particular reduce it. Examination of the hydrogen bonds results
(figure 5.21), shows that permeants do not form extra hydrogen bonds with DOPE lipids de-
spite the enhanced capability of the latter to form them. This is a strong indication that the
lateral pressure profile is the main source of the differences in the permeation coefficients.

All the comparisons in this section were performed with the logarithm of the permeation
coefficient logP (which tends to “dampen” the differences), thus the statistical significance
for the actual permeation coefficients is expected to be even higher. However, such a com-
parison was not possible because permeation coefficients varied orders of magnitude for
such a diverse set of molecules.

The permeation coefficients reported in this work show that for molecules with molecular
weight lower than 100 g mol−1, there was a statistically significant reduction in permeation
through a mixed DOPC:DOPE bilayer compared to a pure DOPC. On the contrary the ex-
amined three drugs with molecular weight higher than 100 g mol−1 showed a statistically
significant increase in permeability through the mixed membrane. That was a very inter-
esting and counter-intuitive finding that went against the hypothesis of this work. With the
available analysis results the cause of this behaviour is inconspicuous, although it is possible
that the larger size of these drugs might in fact alter the lateral pressure profile. Remarkably,
the limited experimental and computational data that are available in the literature validate
in all cases our findings (table 5.6), even for the non-intuitive faster permeation of larger
molecules through the DOPC:DOPE membrane.

Jansen and Blume203 examined water permeation through several large unilamellar lipid
vesicles. In particular, at T=343 K, DMPE and DPPE reduced permeation by ≈ 99% in
comparison to pure DMPC and DPPC, respectively. The same behaviour was observed in
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this study but the relative difference between the PC and PC:PE membrane was smaller
(−27%).

Huster et al.115 have also studied water permeation, with O17 nuclear magnetic resonance,
through a pure DOPC and a DOPC:DOPE(1:1) bilayer, at T=303 K. They reported that for
the latter, the permeation coefficient reduced by ≈ 39% , consistent with the present work.

Seo et al.220 performed a study on the effect of lipid composition on the passive permeation
of molecules through PAMPA assays, and observed an 825% increase on the permeation
of benzoic acid through a DOPE bilayer, in comparison to a pure DOPC. While the two
methodologies vary considerably and the size of lipid vesicles in PAMPA is greater than of
the systems examined here, it is noteworthy that our simulations predicted the same relative
increase in permeation (31%) through the mixed membrane. The experimental validation
of this non-intuitive behaviour is reassuring for the accuracy of the findings of this study.

Hub et al.210 examined the permeation of ammonia through a pure POPC and a pure POPE
bilayer at T=300 K. They reported an ≈ 87% reduction in the permeation for the latter,
which is very similar to the presented observation for DOPC:DOPE(1:3) (−71%).

Wennberg et al.219 examined the partitioning of ammonia, ethanol and propane in a pure
POPC and pure POPE bilayer and they saw that the transfer free-energy through the latter
was increased for all solutes.

Finally, Zocher et al.218 also observed a decrease on the permeation of ammonia through a
pure DOPE membrane in comparison to a pure DOPC.

Table 5.9: Ranking of predicted logP values for both membranes. Permeation is in ascend-
ing order; bottom rows permeate faster.

DOPC DOPC:DOPE

Urea Urea
Water Water

Glycine Glycine
Paracetamol Ammonia
Ammonia Paracetamol
Ethanol Ethanol

Isopropanol Isopropanol
Coumarin Phenol

Fluoromethane Coumarin
Phenol Fluoromethane

Benzoic acid Carbon dioxide
Propane Propane

Carbon dioxide Benzoic acid

The aforementioned results and discussion enforces the established view that permeation
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is a complicated process, affected by numerous parameters in an intricate way. The results
presented in this work clearly indicate an effect of the lipid bilayer composition to the lateral
pressure profile and thus in the passive permeation mechanism. However, this effect seems
to be more subtle and play a secondary role in comparison to the individual characteristics
of each permeant, such as the size, the shape or the polarity. The logP permeation ranking
for the DOPC membrane and the DOPC:DOPE(1:3) is presented in table 5.9 and shows
that permeation was mostly determined by the partitioning propensity, similar to past stud-
ies248–250,306,307, rather than the changes in the lateral stresses. Furthermore, there are cases
in which the permeants alter the lateral pressure profile of the membrane they permeate81,
which makes the understanding of the process even more challenging. To the knowledge of
the authors, this is the first attempt to quantitatively connect the lateral pressure profile to
the permeation through atomistic molecular dynamics simulations.
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5.9 A critique on permeation simulations
Passive permeation is a crucial biological activity driven according to the corresponding
concentration gradient. While this mechanism is theoretically explained by Fick’s first law
of diffusion, the numerous aspects that control real physiological systems remain mostly
unexplored. Furthermore, experimental methods have important limitations on examining
the underlying physics of passive permeation due to the small scales involved.

Molecular dynamics has revolutionised the research of passive permeation as it allowed for
the first time an atomistic perspective on the interactions between the fluid membranes and
the permeants. Molecular dynamic simulations however, do not come without disadvan-
tages. The researcher that decides to simulate such a system has to keep in mind that a
model is as accurate as the underlying force field parameters that describe it and numerical
tools that is using. Furthermore, the single-lipid-type membranes that are used in passive
permeation simulations are very far from the actual complexity of real cellular membranes.
Even in the case of the more similar single-lipid in vitro methods like PAMPA, lipids form
much larger and complex vesicles than the pseudo multi-lamellar systems examined with
MD and thus results should be interpreted with these important aspects in mind.

Another drawback of MD permeation simulations is the large computational cost. While
constant technological advances enable today’s researchers to reach µs time-scales of MD
simulations, more and more studies claim that true convergence of a permeant-membrane
system might require up to hundreds of ns due to hidden barriers149,150, which have even
put into question the established inhomogeneous solubility diffusion model308. If this is
taken into account along with the large number of positions that are required to explore the
depth of monolayer or bilayer, it is without doubt that further steps towards more efficient
methodologies are required. The final major drawback of the current established method-
ology is the lack of freely available analysis tools that are well tested for their accuracy and
robustness.

In conclusion, although permeation simulations have undergone an impressive improve-
ment the last 20 years, they still face problems of “immaturity” that prevent their wide
adoption from the industry, in contrast to the established and “mature” QSAR153. Until the
full potential of MD simulations can be exploited by non-academics, hybrid solutions of
MD with QSAR as proposed by Lee et al.254 might be the optimal solution for the near
future. Alternatively, data from existing MD studies can be used to fine-tune the trans-
fer free-energy or conformational free-energy values of enhanced physical models such as
the one proposed by Leung et al.155,156. In fact, in the past 20 years there have been hun-
dreds of permeation studies and the already published results could provide a substantial
improvement on the transfer free-energy approximations.
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This dissertation investigated the biologically crucial process of passive permeation both
methodologically and under the perspective of biophysics using MD simulations. Although
previous passive permeation studies have utilised atomistic and coarse-grained molecular
dynamics simulations, this is the first time that a software toolbox is created to assist the
research community on streamlining the complicated pre- and post- processing, as well as
HPC simulation management that is involved with these studies.

Additionally, for the first time, a systematic study of important methodological parame-
ters and options are reported for the two mostly used methods, the z-constraint and the
z-restraint. Such parameters included the sampling frequency of the constraint force, the
PMF convergence analysis techniques and the establishing of a diffusion calculation method
for the z-restraint method. In particular for the latter, a thorough comparison between the
Hummer and the Zhu and Hummer techniques proved the robustness of the first. Several
ways to compute the integral of the autocorrelation function of the restrained position were
also tested.

Furthermore, the free-energy, local diffusion and local resistance profiles, as well as the fi-
nal permeation coefficients are reported for thirteen small molecules and drugs. Eleven
permeation coefficients are reported for the first time for transport through DOPC and
DOPC:DOPE(1:3) membranes. Based on the results and a systematic comparison of the
methods, the z-restraint method was found to be the best for robust, high-throughput MD
simulations.

The effect of the nonlamellar DOPE lipids on passive permeation was also examined. Ac-
cording to the hypothesis of this work, the permeation through the mixed membrane should
have been slower. The aforementioned findings showed that lamellar/nonlamellar mix-
tures hindered the permeation of molecules with molecular weight smaller than 100 g mol−1
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but facilitated permeation on small drugs with molecular weight larger than 100 g mol−1.
The results of the small molecules validate the initial hypothesis. The results for the drug
molecules are very interesting but also counter-intuitive as they do not follow the expected
behaviour due to the increase of lateral pressure in the lipid tails region. Remarkably, all
of the results were in agreement with previously reported coefficients, both hindered and
facilitated. Hydrogen bonds analysis indicated no extra formations with DOPE lipids, iso-
lating the lateral pressure profile as the predominant factor of effect. This is the first time
that permeation through DOPC/DOPE compositions is systematically examined under the
perspective of key membrane properties. Overall, although permeation is still predomi-
nantly dictated by the physicochemical properties of the solutes, this study showed that
nonlamellar lipids also contribute to the passive permeation mechanism, in a complex fash-
ion, through the lateral pressure profile. Therefore, they should be taken into account during
the drug design process.

Considering the aforementioned conclusions, it is clear that there are numerous, poten-
tially exciting research paths in the future. Increase of the compositional complexity of the
membrane should be one of the research priorities. In particular, examination of how differ-
ent lipids affect the lateral pressure profile and the elastic properties of a multi-component
membrane, both individually and in synergy, should precede any permeation study through
such a membrane. The addition of cholesterol is also crucial, as there is evidence of a
significant effect on the stress distribution and membrane rigidity77,94,184,218. Furthermore,
although most permeation studies consider membranes as symmetrical with regards to their
composition, real cell membranes are asymmetrical between their internal and external
monolayers267,309,310 and thus future studies should examine the effect of this asymmetry on
passive permeation in relation to the lateral pressure profile.

Future work should also include multiple reaction coordinates to ensure true convergence
without any hidden barriers. Also, while computational demanding, an energetic analysis of
the Gibbs free-energy components135 of the permeating molecules would provide a better
perspective of the forces acting inside the bilayer. The effect of larger molecules on the
lateral pressure profile should also be further studied and taken into account on permeation
simulations.

Finally, future work would also involve the improvement of the software toolbox created
for this work. While already capable of automating the three main stages of the permeation
study, it heavily relies on the side toolkits of other MD software packages. The modular-
isation of force field selection, the inclusion of more MD software suites for simulations,
or the addition of extra methods for the study of permeation would certainly increase the
outreach and user base of the toolbox.
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Appendix A
constraint force sampling frequency

In order to calculate the permeation coefficient of each molecule with the z-constraint
method, the free-energy profile has to be computed (equation 2.53), thus is necessary
to sample the force applied to the permeant in order to constrain its distance from the
membrane centre. The constraint force is a widely fluctuating property as the permeat-
ing molecule experiences different membrane conformations in each timestep. To identify
whether the sampling frequency affects the final results, a comparison study between three
different sampling options was performed. The three options were:

1. to use the instant force value of the timestep on every 10 ps sample

2. to use a local average of the last 10 timesteps before every 10 ps sample

3. to use an average of 25 timesteps, evenly distributed between every 10 ps sample.

Figure A.1 shows the free-energy profile, for the water molecule permeating through the
pure DOPC membrane, produced with the three different sampling choices. Qualitatively,
all curves exhibit the same characteristics where the free-energy profile gradually increases
to a maximum barrier in the core region of the bilayer. Quantitatively, the third “10 ps
barrier” is slightly lower than the other two and also is closer to the barrier values that
have been reported in the literature (see the results and discussion chapter). In addition,
due to the fact that each 10 ps sample is computed as an average of 25 timesteps, evenly
distributed between each sampling point, the third option provides a better representation of
the constraint forces that the permeant “feels” and therefore, all of the z-constraint results
were produced based on it.
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Appendix A. constraint force sampling frequency

Figure A.1: Comparison of constraint force sampling on ∆G profiles.
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Appendix B
Hypothesis testing tables

Table B.1: The logP values that were used for the hypothesis t-test

Permeant logP ∆logP

DOPC DOPC:DOPE

Ammonia -2.18 -2.72 -0.54
Water -3.40 -3.54 -0.14

Fluoromethane 0.59 0.61 0.02
Carbon dioxide 1.00 0.85 -0.16

Propane 0.86 0.86 0.00
Ethanol -0.81 -0.97 -0.16

Urea -6.17 -6.40 -0.23
Isopropanol -0.20 -0.48 -0.27

Glycine -2.69 -3.20 -0.51
Phenol 0.70 0.38 -0.32

Benzoic Acid 0.80 0.91 0.12
Coumarin 0.06 0.56 0.50

Paracetamol -2.42 -2.03 0.40

Table B.2: The analysis of the t-test.

MW<100 MW>100 All

Mean: -0.230 0.340 -0.098
Standard deviation: 0.188 0.201 0.309

Hypothesised mean (h): 0 0 0
t-statistic: 3.862 -2.933 1.144

Degrees of freedom: 9 2 12
Critical t-value (one-tailed): 1.833 2.920 1.782

Critical t-value (two-tailed) +-: 2.262 4.303 2.179
One-tailed probability P(h <x): 0.0019 0.950 0.137
One-tailed probability P(h >x): 0.998 0.0496 0.863

Two-tailed probability P(h = x): 0.004 0.099 0.275
Two-tailed probability P(h , x): 0.996 0.901 0.725
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