22 research outputs found

    LMI-based design of distributed energy-dissipation systems for vibration control of large multi-story structures

    Get PDF
    In this paper, we present an advanced computational procedure that allows obtaining distributed energy-dissipation systems for large multi-story structures. The proposed methodology is based on a decentralized velocity-feedback energy-to-componentwise-peak (ECWP) controller design approach and can be formulated as a linear matrix inequality (LMI) optimization problem with structure constraints. To demonstrate the effectiveness of the proposed design methodology, a passive damping system is computed for the seismic protection of a 20-story building equipped with a complete set of interstory viscous dampers. The high-performance characteristics of the obtained passive ECWP control system are clearly evidenced by the numerical simulation results. Also, the computational effectiveness of the proposed design procedure is confirmed by the low computation time of the associated LMI optimization problem.Peer ReviewedPostprint (published version

    Semi-decentralized Strategies in Structural Vibration Control

    Get PDF
    In this work, the main ideas involved in the design of overlapping and multi-overlapping controllers via the Inclusion Principle are discussed and illustrated in the context of the Structural Vibration Control of tall buildings under seismic excitation. A detailed theoretical background on the Inclusion Principle and the design of overlapping controllers is provided. Overlapping and multi-overlapping LQR controllers are designed for a simplified five-story building model. Numerical simulations are conducted to asses the performance of the proposed semi-decentralized controllers with positive results

    Active-passive decentralized H∞ control for adjacent buildings under seismic excitation

    Get PDF
    In this paper, a control strategy to reduce the vibrational response of adjacent buildings under seismic excitation is presented. The proposed strategy combines passive linking elements with an active decentralized H∞ control system. The overall active-passive control system admits decentralized design and operation, and achieves an excellent vibrational reduction when the active control system works; in case of a full or partial failure of the active control system, a remarkable reduction in the vibrational response is guaranteed by the passive linking elements. For adjacent buildings that require different levels of seismic protection, the implementation of an active H∞ control system in just one of the buildings is also considered. The main ideas are presented by means of a simplified two-building model. Numerical simulations have been carried out to assess the performance of the proposed methodology with promising results

    Optimal passive-damping design using a decentralized velocity-feedback H-Infinity approach

    No full text
    In this work, a new strategy to design passive energy dissipation systems for vibration control of large structures is presented. The method is based on the equivalence between passive damping systems and fully decentralized static velocity-feedback controllers. This equivalence allows to take advantage of recent developments in static output-feedback control design to formulate the passive-damping design as a single optimization problem with Linear Matrix Inequality constraints. To illustrate the application of the proposed methodology, a passive damping system is designed for the seismic protection of a five-story building with excellent results
    corecore