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Abstract: In this paper, a control strategy to reduce the vibrational response of adjacent
buildings under seismic excitation is presented. The proposed strategy combines passive
linking elements with an active decentralized H∞ control system. The overall active-passive
control system admits decentralized design and operation, and achieves an excellent vibrational
reduction when the active control system works; in case of a full or partial failure of the
active control system, a remarkable reduction in the vibrational response is guaranteed by
the passive linking elements. For adjacent buildings that require different levels of seismic
protection, the implementation of an activeH∞ control system in just one of the buildings is also
considered. The main ideas are presented by means of a simplified two-building model. Numerical
simulations have been carried out to assess the performance of the proposed methodology with
promising results.

Keywords: Decentralized control, H-infinity control, structural vibration control, linear
matrix inequalities.

1. INTRODUCTION

Over the last decades, Structural Vibration Control (SVC)
for seismic hazard mitigation has become an active re-
search field. Significant advances, both theoretical and
experimental, have been made in protecting buildings and
civil structures from the destructive effects of seismic
events. Different kinds of energy dissipation devices and
control strategies have been developed and tested with
positive results, both at simulation level and in full-scale
implementations. Attending to external energy require-
ments, SVC systems are commonly classified in three
broad categories: passive, active, and semi-active systems.
Passive SVC systems do not require an external power
source, they are simple, compact, reliable, and may achieve
remarkable but limited results. Active SVC systems can
be more effective; however, they require a large external
power supply, massive and complex actuation devices,
accurate state information, and may produce instability.
Finally, recently developed semi-active SVC systems can
operate on battery power and combine the simplicity and
reliability of passive systems with the performance levels
and flexibility of full active systems. In this case, one of the

1 This work was supported in part by the Spanish Ministry of
Science and Innovation and FEDER funds from the European Union
through the Grants DPI2008-06699 and DPI2008-06564-C02-02

main difficulties is the nonlinear nature of semiactive de-
vices, which makes the design of feedback control strategies
a challenging task. A good survey can be found in Housner
et al. (1997), and Spencer and Nagarajaiah (2003).

Although the most appealing examples of SVC implemen-
tations are those involving huge structures as high towers
or long-span bridges, it should be noted the existence of
a large variety of medium-size and small-size strategic
structures for which seismic protection may be of critical
importance. Some clear examples are communication and
command centers, emergency service facilities, hospitals,
emergency power plants, etc. In all these cases, it is not
enough to prevent structural failure and ensure safety, but
also operational serviceability of the structure and equip-
ment needs to be assured. Moreover, despite the medium
or small size of individual buildings, the overall structure
may be highly complex comprising two or more adjacent
buildings and a variety of attached substructures, possibly
requiring different levels of seismic protection.

When dealing with the seismic response of closely adja-
cent structures, the possibility of inter-structure collisions
(pounding) should be considered. Pounding may cause
severe structural damage, even collapse in some extreme
situations Anagnostopoulos (1996). Further, large acceler-
ation pulses may result from the quick and massive pound-
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ing impacts, which can cause serious damage to building
contents Lopez-Garcia and Soong (2009). It is also worth
to be noted that some seismic protection strategies such
as passive base isolation, which can effectively reduce the
seismic response of isolated buildings, may also increase
the risk of pounding between insufficiently spaced adjacent
structures Matsagar and Jangid (2005).

In recent years, the Connected Control Method (CCM)
has proved to be an effective strategy to simultaneously
mitigate pounding effects and achieve vibrational response
reduction. In the CCM, closely adjacent structures are
linked together by coupling devices to provide appropriate
reaction control forces. The application of the CCM using
different kinds of passive, active, and semiactive linking
devices have been investigated with positive results. Two
recent and interesting references are Bharti et al. (2010)
and Preumont and Seto (2008).

The aim of this work is to explore the seismic response
of a complex structure consisting of two adjacent actively
controlled buildings linked by damping passive elements.
The resulting active-passive overall control system com-
bines the high performance characteristics of active control
systems with the reliability of passive control elements
and, at the same time, admits a decentralized design and
operation of the active control subsystems. More precisely,
we consider a two-building coupled system with the fol-
lowing control structure (see Fig. 1): (i) Every story is
equipped with an ideal active actuator, (ii) passive energy
dissipation devices are located at the linking elements, (iii)
in each building, the active actuators are operated by an
independent feedback local controller.

The seismic response of the two-building system when
the decentralized active control system is partially or
totally switched off is a particularly relevant subject, which
admits two interesting practical interpretations: from a
reliability point of view, it can be seen as the system
response under a partial or full failure of the active
control system; from a design point of view, it can be
understood as the response produced by different active
control configurations corresponding to different levels of
seismic protection.

Due to the complexity of the overall system, we have
chosen a minimal configuration that allows a clear pre-
sentation of the main ideas while maintaining the gen-
erality of the approach. This configuration consists of a
three-story building linked to a two-story building. The
linking passive elements have been modeled as viscoelastic
dampers. For the overall system, a state feedback central-
ized H∞ controller has been obtained, which have been
taken as a reference in the performance assessment. The
design of the decentralized controller has been carried out
following two different strategies. First, a decentralized
H∞ controller has been obtained using the whole model
of the coupled two-building system by imposing suitable
structure constraints in the corresponding LMIs. Second,
H∞ controllers have been independently computed for
each building ignoring the passive linking.

Numerical simulations of the vibrational response of the
two-building system have been conducted, using the El
Centro NS 1940 earthquake as ground acceleration. The
simulation data indicate that, despite the decentralized

design and the restricted information exchange, the results
obtained by the decentralized active controllers are simi-
lar to those attained by the centralized active controller.
When the decentralized active control system is completely
switched off, a remarkable reduction of the maximum
inter-story drifts in both buildings is guaranteed by the
passive elements. If only one of the local active controllers
is disabled, the response of the actively controlled build-
ing remains practically unaffected; moreover, the control
forces in the working active devices increase slightly and
act through the linking elements to drive the response of
the uncontrolled building to a level that is clearly below
the level obtained by the pure passive control.

The paper is organized as follows. In Section 2, a simplified
model of the two-building coupled system is provided. In
Section 3, two different decentralized controllers together
with a centralized controller, which serves as reference, are
computed. A brief summary relative to H∞ control is also
included. Finally, in Section 4, numerical simulations of
the free and controlled responses for the different cases
under consideration are presented and compared.

2. TWO-BUILDING MODEL
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Figure 1. Structural model for two adjacent buildings

In this section, a simplified model for a two-building
coupled system formed by a three-story building and
a two-story building linked by viscoelastic dampers is
presented. The buildings motion can be described by

M q̈(t) +C q̇(t) +K q(t) = Tu u(t)−MTw w(t), (1)

where M is the mass matrix; K and C are the total
stiffness and damping matrices, respectively, including the
stiffness and damping coefficients of the buildings as well
as the stiffness and damping coefficients of the viscoelastic
dampers; the vector of relative displacements with respect
to the ground is

q(t) =
[

q
(l)
1 (t), q

(l)
2 (t), q

(l)
3 (t), q

(r)
1 (t), q

(r)
2 (t)

]T

,

where q
(l)
i (t) and q

(r)
i (t) represent, respectively, the dis-

placement of the ith story in the left and right building;
the vector of control forces has a similar structure

u(t) =
[

u
(l)
1 (t), u

(l)
2 (t), u

(l)
3 (t), u

(r)
1 (t), u

(r)
2 (t)

]T

;
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Tu=I5×5 is the control location matrix; Tw is the in-
dex vector with all its elements equal to 1, and w(t) is
the ground acceleration. With the notations indicated in
Fig. 1, the matrices in equation (1) have the following
structures:

M =
[

ML 0

0 MR

]

,

ML = diag
[

m
(l)
1 ,m

(l)
2 ,m

(l)
3

]

, MR = diag
[

m
(r)
1 ,m

(r)
2

]

,

C = Cs +Cd, K = Ks +Kd.

The inter-story damping matrix is

Cs =
[

CL 0

0 CR

]

,

with

CL =





c
(l)
1 +c

(l)
2 −c

(l)
2 0

−c
(l)
2 c

(l)
2 +c

(l)
3 −c

(l)
3

0 −c
(l)
3 c

(l)
3



, CR =

[

c
(r)
1 +c

(r)
2 −c

(r)
2

−c
(r)
2 c

(r)
2

]

,

while the inter-building damping matrix corresponding to
the viscoelastic dampers is

Cd =











c
(d)
1 0 0 −c

(d)
1 0

0 c
(d)
2 0 0 −c

(d)
2

0 0 0 0 0

−c
(d)
1 0 0 c

(d)
1 0

0 −c
(d)
2 0 0 c

(d)
2











.

Analogously, the inter-story stiffness matrix is

Ks =
[

KL 0

0 KR

]

,

with

KL=





k
(l)
1 +k

(l)
2 −k

(l)
2 0

−k
(l)
2 k

(l)
2 +k

(l)
3 −k

(l)
3

0 −k
(l)
3 k

(l)
3



, KR=

[

k
(r)
1 +k

(r)
2 −k

(r)
2

−k
(r)
2 k

(r)
2

]

,

and the inter-building stiffness matrix takes the form

Kd =











k
(d)
1 0 0 −k

(d)
1 0

0 k
(d)
2 0 0 −k

(d)
2

0 0 0 0 0

−k
(d)
1 0 0 k

(d)
1 0

0 −k
(d)
2 0 0 k

(d)
2











.

From the second-order model (1), a first-order state-space
model can be derived

S :

{

ẋ(t) = Ax(t) +Bu(t) + Ew(t),

y(t) = Cy x(t).
(2)

Here, the state vector x(t) ∈ R
10 groups together the

displacements and the velocities arranged in increasing
order, that is,

x(t)=[ q1(t), q̇1(t), · · · , q5(t), q̇5(t)]T,

where qi(t) = q
(l)
i (t), i=1, 2, 3, is the displacement rela-

tive to the ground of the ith story in the left building,

and q4(t)=q
(r)
1 (t), q5(t)=q

(r)
2 (t) denote the displacements

for the right building. The matrices for the state-space
model (2) used in the controllers design and the response
numerical simulations are

A=

















0 1 0 0 0 0 0 0 0 0
−6201 −0.2 3100 0.1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
3100 0.1 −6201 −0.9 3100 0.1 0 0 0 0.8
0 0 0 0 0 1 0 0 0 0
0 0 3100 0.1 −3100 −0.1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −3100 −0.2 1550 0.1
0 0 0 0 0 0 0 0 0 1
0 0 0 0.8 0 0 1550 0.1 −1550 −0.9

















B=10−6 ×













0 0 0 0 0
0.7752 0 0 0 0

0 0 0 0 0
0 0.7752 0 0 0
0 0 0 0 0
0 0 0.7752 0 0
0 0 0 0 0
0 0 0 0.7752 0
0 0 0 0 0
0 0 0 0 0.7752













,

E=[ 0,−1, 0,−1, 0,−1, 0,−1, 0,−1 ]
T
,

Cy=





1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0



.

(3)
It should be noted that the output matrix Cy extracts the
inter-story drifts of the buildings, that is,

y(t) =
[

y
(l)
1 (t), y

(l)
2 (t), y

(l)
3 (t), y

(r)
1 (t), y

(r)
2 (t)

]T

,

where y
(l)
1 =q

(l)
1 , y

(l)
2 =q

(l)
2 − q

(l)
1 , y

(l)
3 =q

(l)
3 − q

(l)
2 , y

(r)
1 =q

(r)
1 ,

y
(r)
2 =q

(r)
2 − q

(r)
1 . The matrices in (3) correspond to the fol-

lowing particular values of the mass, damping and stiffness

coefficients:m
(l)
i =m

(r)
j =1.29×106 Kg; c

(l)
i =c

(r)
j =105 Ns/m;

k
(l)
i =4×109N/m; k

(r)
j =2×109N/m; c

(d)
1 =0, c

(d)
2 =106 Ns/m;

k
(d)
j =0, for i=1, 2, 3, j=1, 2. A detailed derivation of the

first-order state-space model (2) can be found in Wang
et al. (2009).

3. CONTROLLERS DESIGN

In this section, three active H∞ controllers for the sys-
tem (2) are computed: a centralized controller and two
decentralized controllers; in all the cases, the particular
values given in (3) are used. The centralized controller
will be taken as a reference in the performance assessment.
For the decentralized controllers, two different approaches
are followed: a centralized design which uses the overall
two-building coupled model, and a decentralized design
which considers the buildings independently, ignoring the
linkage. Regarding to the passive control system, the build-
ings are linked by a single damper with damping constant

c
(d)
2 =106 Ns/m, located at the second story. This config-
uration may be considered as optimal, in the sense that
numerical simulations show that no significant reduction
of the vibrational response results when a similar damper
is placed linking the first stories, or elastic linking elements
are considered. In terms of the damping and stiffness coef-

ficients, this means c
(d)
1 =0, k

(d)
1 =k

(d)
2 =0. Finally, a number

of good reasons justify the choice of the H∞ approach for
the problem under consideration: the practical interpreta-
tion of the H∞ norm as minimum worst case gain from
energy disturbance to energy response, the existence of
efficient solvers via LMI formulation which allow to obtain
decentralized controllers by imposing structure constraints
on the controller gain matrix, and the possibility of extend-
ing the study to a variety of interesting scenarios which
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may include several kinds of uncertainties, delays, actuator
saturation, etc.

3.1 H∞ control

In this subsection, a brief summary of H∞ control design
is presented; a detailed treatment can be found in Boyd
et al. (1994). Let us consider the system (2) together with
the controlled output z(t)=Czx(t)+Dzu(t) where Cz and
Dz are, respectively, the state and control-force controlled
output matrices. For a given state feedback controller
u(t)=Gx(t), the following closed-loop system results

S
CL

:

{

ẋ(t) = A
CL

x(t) + Ew(t),

z(t) = C
CL

x(t),
(4)

where

A
CL

= A+BG, C
CL

= Cz +DzG. (5)

The closed-loop transfer function from the disturbance
w(t) to the controlled output z(t) has the form

Tzw(s) = C
CL

(sI −A
CL

)
−1

E. (6)

The objective is to find a gain matrix Gop which produces
a stable matrix A

CL
and, at the same time, minimizes the

value of the norm

‖Tzw‖∞ = max
ω

σ̄ [Tzw(jω)] , (7)

where σ̄(·) denotes the maximum singular value. For a
prescribed γ>0, according to the Bounded Real Lemma,
the following two statements are equivalent:

(1) ‖Tzw‖∞<γ and A
CL

is stable.

(2) There exists a symmetric positive-definite matrix
P∈R2n×2n such that the following inequality

[

A
CL

P+PAT

CL
+γ−2EET PCT

CL

∗ −I

]

< 0 (8)

holds, where ∗ denotes the symmetric entry.

By using the closed-loop matrix definitions given in (5),
equation (8) becomes

[

AP+PAT+BGP+PGTBT+γ−2EET PCT
z +PGTDT

z

∗ −I

]

< 0.

The above nonlinear matrix inequality can be converted
into a linear matrix inequality (LMI) by introducing the
new variables Y=GP and η=γ−2

[

AP+PAT+BY+Y TBT+ηEET PCT
z +Y TDT

z

∗ −I

]

< 0. (9)

The continuous-time H∞ control problem is then trans-
formed into the following convex optimization problem:

{

maximize η

subject to P > 0, η > 0 and the LMI (9),
(10)

where the matrices Y , P are the optimization variables. If
the optimal value ηmax is attained for the optimal matrices
Yop, Pop, the corresponding gain matrix can be computed
as

Gop = Yop P
−1

op , (11)

and the value of the minimum H∞ norm is

‖Tzw(Gop)‖∞ = γ
Gop

=
1√
ηmax

, (12)

where Tzw(Gop) denotes the transfer function described in
(6) corresponding to the control gain matrix Gop.

3.2 Centralized Control

First, we compute a centralized H∞ control by solving
the optimization problem stated in (10) using the system
matrices given in (3) and the controlled output matrices

Cz =

[

Cy

0
5×10

]

, Dz = 0.3162× 10−7

[

0
5×5

I
5×5

]

,

obtaining the following full control gain matrix

Gc = 107×




0.133 −0.061 0.180 −0.082 0.289 −0.083 −0.810 −0.031 −1.422 −0.050
0.275 −0.082 0.344 −0.145 0.498 −0.165 −1.515 −0.055 −2.527 −0.091
0.302 −0.083 0.470 −0.165 0.594 −0.226 −1.992 −0.070 −3.071 −0.113
0.711 −0.031 1.300 −0.057 1.687 −0.070 −0.254 −0.072 −0.445 −0.067
1.231 −0.050 2.227 −0.091 2.573 −0.113 −0.336 −0.067 −0.736 −0.138





and the minimum γ value
∥

∥Tzw(Gc)

∥

∥

∞
= γ

Gc
= 0.0788.

Note that to compute the actuation force for any story
using the gain matrix Gc, the knowledge of the complete
state of both buildings is required.

3.3 Decentralized Control with Centralized Design

Second, we consider again the overall two-building coupled
system but now the goal is to design a decentralized
controller by imposing a block diagonal structure on the
control gain matrix. To this end, we solve problem (10)
using variable matrices P and Y with the form

P =

[

P11 0

0 P22

]

, Y =

[

Y11 0

0 Y22

]

,

where P11, P22 are positive-definite matrices of dimensions
6× 6 and 4× 4, respectively, and Y11, Y22 are rectangular
matrices of dimensions 3× 6 and 2× 4. The matrices used
in the controlled output z(t)=Czx(t)+Dzu(t) are

Cz =

[

Cy

05×10

]

, Dz = 0.5623× 10−7

[

0
5×5

I
5×5

]

.

After solving the corresponding constrained LMI mini-
mization problem, the following block diagonal gain matrix
results

Gdc = 106×




0.078 −1.049 0.094 −1.177 −0.230 −1.426 0 0 0 0
0.320 −1.177 0.056 −2.476 −0.268 −2.603 0 0 0 0
0.497 −1.426 0.190 −2.603 −0.346 −3.653 0 0 0 0

0 0 0 0 0 0 0.057 −1.220 −0.153 −1.346
0 0 0 0 0 0 0.354 −1.346 −0.269 −2.566





and the associated minimum γ value is

‖Tzw(Gdc)‖∞ = γ
Gdc

= 0.1544.

In this case, we only need the state of the corresponding
building to compute the actuation force for a given story.
Predictably, a higher γ value has been obtained due to
the structural restrictions imposed on matrices Y and P ;
however, the resulting γ value is still remarkably low.

3.4 Decentralized Control with Decentralized Design

Finally, we proceed to design a decentralized controller
considering the buildings independently and ignoring the
passive linking system. In this third case, we have two
independent subsystems

S
L
:

{

ẋ
L
(t) = A

L
x
L
(t) +B

L
u
L
(t) + E

L
w(t),

y
L
(t) = (Cy)L x

L
(t),

(13)
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S
R
:

{

ẋ
R
(t) = A

R
x
R
(t) +B

R
u
R
(t) + E

R
w(t),

y
R
(t) = (Cy)R x

R
(t),

(14)

with state vectors

x
L
(t) =

[

q
(l)
1 (t), q̇

(l)
1 (t), q

(l)
2 (t), q̇

(l)
2 (t), q

(l)
3 (t), q̇

(l)
3 (t)

]T

,

x
R
(t) =

[

q
(r)
1 (t), q̇

(r)
1 (t), q

(r)
2 (t), q̇

(r)
2 (t)

]T

,

control forces

u
L
(t) =

[

u
(l)
1 (t), u

(l)
2 (t), u

(l)
3 (t)

]T

, u
R
(t) =

[

u
(r)
1 (t), u

(r)
2 (t)

]T

,

and outputs

y
L
(t) =

[

y
(l)
1 (t), y

(l)
2 (t), y

(l)
3 (t)

]T

, y
R
(t) =

[

y
(r)
1 (t), y

(r)
2 (t)

]T

.

The matrices in (13) and (14) can be easily derived from
the matrices and values given in Section 2; for instance,
the output matrices are

(Cy)L =

[

1 0 0 0 0 0
−1 0 1 0 0 0
0 0 −1 0 1 0

]

, (Cy)R =
[

1 0 0 0
−1 0 1 0

]

.

For the left subsystem S
L
, we consider the controlled

output
z
L
(t) = (Cz)LxL

(t) + (Dz)LuL
(t)

with

(Cz)L =

[

(Cy)L
0

3×6

]

, (Dz)L = 0.5623× 10−7

[

03×3

I
3×3

]

,

to compute an H∞ controller G
L
. Analogously, for the

right subsystem S
L
we take

z
R
(t) = (Cz)RxR

(t) + (Dz)RuR
(t),

(Cz)R =

[

(Cy)R
0

2×4

]

, (Dz)R = 0.5623× 10−7

[

02×2

I
2×2

]

,

to independently compute the gain matrix G
R
. Arranging

G
L
and G

R
in a block diagonal gain matrix, the following

decentralized controller results

Gdd = 106×




0.050 −0.774 −0.003 −0.953 −0.096 −1.095 0 0 0 0
0.212 −0.953 −0.019 −1.868 −0.133 −2.048 0 0 0 0
0.279 −1.095 0.074 −2.048 −0.190 −2.822 0 0 0 0

0 0 0 0 0 0 0.097 −1.905 −0.188 −2.421
0 0 0 0 0 0 0.418 −2.421 −0.298 −4.326





In this case, the minimum γ value is not available; however,
the H∞ norm can be directly computed using (5)–(7),
resulting

‖Tzw(Gdd)‖∞ = 0.1550.

In Fig. 2, the maximum singular value curves of the trans-
fer functions Tzw(Gc), Tzw(Gdc), and Tzw(Gdd) are dis-
played. Note that the curves corresponding to the decen-
tralized controllers Gdc and Gdd are practically coincident.

4. NUMERICAL SIMULATIONS

In this section, numerical simulations of the free and
controlled responses of the two-building system, using
the El Centro 1940 earthquake as acceleration input, are
presented. The maximum absolute inter-story drifts, and
the maximum absolute control forces for the left and right
building are displayed in Fig. 3 and Fig. 4, respectively.
Five cases of response are showed: (i) free response of
the uncoupled system (denoted by Free in the legend),
no passive or active control devices are working in this
case; (ii) free response of the coupled system, i.e. response
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Figure 2. Maximum singular values.

under passive control (denoted by Passive); (iii) response
of the coupled system under the centralized active control
(denoted by Gc); (iv) response of the coupled system under
the decentralized active controller with centralized design
(denoted by Gdc); and (v) response of the coupled system
under the decentralized active controller with decentral-
ized design (denoted by Gdd).

0 0.7 1.4 2.1 2.8 3.5
1

2

3

Left Building  maximum absolute drift  (cm)

S
to

ry
 n

u
m

b
e

r

Left Building

 

 

Free

Passive

Gc

Gdc

Gdd

0 0.5 1 1.5 2 2.5
1

2

3

Left Building maximum control effort  (× 10
6
N) 

C
o

n
tr

o
lle

r

Figure 3. Left building inter-story drifts and control forces

The graphics show that a remarkable reduction of the
vibrational response is achieved by the passive control
system. Regarding the active controllers, the performance
of the decentralized controllers Gdc and Gdd is certainly
excellent: both controllers behave practically the same as
the overall centralized controller, in some cases with a
slightly higher control effort.

Next, we consider the partial and full failure of the
active decentralized controller Gdd. Table 1 presents the
maximum inter-story drifts for full failure (Passive) and
two cases of partial failure (Left failure, Right failure).
The corresponding maximum absolute control actions are
collected in Table 2. As a reference, these tables also
include the data for the free response, actively controlled
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Figure 4.Right building inter-story drifts and control forces

response with the centralized controller Gc, and non-
failure response with the decentralized controller Gdd.

Left Building Right Building

y
(l)
1 y

(l)
2 y

(l)
3 y

(r)
1 y

(r)
2

Free 2.71 2.13 1.17 3.16 1.95

Passive 1.65 1.32 0.72 1.81 1.10

Centralized (Gc) 0.62 0.54 0.35 1.13 0.70

Decentralized (Gdd) 0.64 0.54 0.34 0.79 0.51

Left failure 1.24 1.04 0.61 0.83 0.53

Right failure 0.67 0.57 0.35 1.65 1.03

Table 1. Max. absolute inter-story drifts (cm)

In case of a full failure of the active control system, a
remarkable reduction of the maximum inter-story drifts
in both buildings is achieved by the passive element.
When one of the local active controllers fails, the building
that remains actively controlled is not affected by the
failure. Moreover, the control forces in the working active
controller increase slightly and act through the linking
element to drive the response of the failing building to
a level that is clearly below the level obtained by the pure
passive control. In all the cases, the results achieved by the
decentralized controller Gdd are similar to those obtained
by the centralized control.

Left Building Right Building

u
(l)
1 u

(l)
2 u

(l)
3 u

(r)
1 u

(r)
2

Centralized (Gc) 0.82 1.49 1.87 0.81 1.31

Decentralized (Gdd) 0.79 1.43 1.78 1.14 1.85

Left failure 0 0 0 1.19 1.93

Right failure 0.82 1.47 1.84 0 0

Table 2. Max. abs. actuation force (×106N)

The obtained results can also be seen from another inter-
esting perspective. Buildings containing all sort of delicate
equipment such as laboratories, operating rooms, large
computer servers, telecommunication machinery, etc., may
require a higher seismic protection than building contain-
ing more ordinary facilities as offices or meeting rooms.
In this context, the four working states of the active
decentralized controller: full working, left disabled, right
disabled, and full disabled, can be understood as different

control configurations corresponding to different levels of
seismic protection. Thus, for two adjacent buildings which
require a normal seismic protection, a passive link may be
a good option; in the case that just one of the buildings
needs special seismic protection, the data in Tables 1 and
2 suggest that the implementation of an active controller
in this building together with a passive link may be an ex-
cellent option to obtain a proper level of seismic protection
in both buildings. Moreover, the passive linking will help
to mitigate pounding effects, and may also guarantee a
remarkable level of seismic protection if the active control
fails.

5. CONCLUSIONS

A passive-active structural vibration control for adjacent
buildings consisting in a combination of passive linking
elements with an active decentralized H∞ control system
has been designed. Numerical simulations show that the
overall active-passive control system achieves excellent
results when the active control system works; in case of full
or partial failure of the active control system, a remarkable
reduction in the vibrational response is guaranteed by the
passive linking elements. The results also indicate that the
implementation of an active control system in just one
of the buildings together with a passive link may be a
good control strategy for adjacent buildings which require
different levels of seismic protection.
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