119 research outputs found

    Dynamics of physical and biological systems of the Prince Edward Islands in a changing climate

    Get PDF
    Sub-Antarctic islands are classified as isolated, hostile, impoverished regions, in which the terrestrial and marine ecosystems are relatively simple and extremely sensitive to perturbations. They provide an ideal ecological laboratory for studying how organisms, ecological processes and ecosystems respond to a changing ocean climate in the Southern Ocean. 1hese islands are characterised by large populations of top predators and subsequently any changes in the oceanographic frontal dynamics associated with the Antarctic Circumpolar Current, either in the vicinity of these islands or further afield, may have strong implications on their foraging behaviour. The relatively easy accessibility of the Prince Edward Islands from South Africa and their location between the main frontal systems bordering the Antarctic Circumpolar Current enable high-resolution synoptic field studies to be undertaken. Such studies have provided information on the impact changes in the large-scale ocean dynamics have on the local marine ecosystems

    Evidence for a decline in the population density of Antarctic krill Euphausia superba Dana still stands. A comment on Cox et al

    Get PDF
    Antarctic krill (Euphausia superba Dana, 1850) exemplifies the key role of marine crustaceans in fisheries, foodwebs, and biogeochemical cycles. Ecological understanding and policy decisions require information on population trends. We have therefore worked with international colleagues to publish KRILLBASE, a database of fishery-independent krill population information for every decade since the 1970s. These data were used by Cox et al. (2018) who dispute the evidence for a late twentieth-century decline in krill density (number per unit area) in the Southwest Atlantic sector of the Southern Ocean and claim to overturn “much of recent thinking about climate-driven change in krill populations.” They support this claim with an analysis which reaffirms one non-significant result from an earlier paper but does not challenge the five significant results from that paper or those of other studies which support a decline. In this comment we examine the methods which led Cox and coauthors to conclude that krill density has been stable over the last 40 years. Although these authors provide a potentially useful approach, we show that their analysis was biased by the exclusion of usable net types, the inclusion of negatively biased data and down-weighting of high densities in the early part of the analysis period, the absence of recent data from the north of the sector, and a lack of statistical hypothesis testing. These factors maximise the chances of failure to detect a real decline. To aid future analyses we provide recommendations to supplement those which accompany KRILLBASE. We also suggest the need for consensus scientific advice on krill population dynamics based on agreed standards of evidence, evaluation of uncertainty, and a thorough understanding of the data. This will be more useful to policy makers and other stakeholders than polarised opinions. Meanwhile, the evidence for a decline in krill density still stands

    Krill (Euphausia superba) distribution contracts southward during rapid regional warming

    Get PDF
    High-latitude ecosystems are among the fastest warming on the planet1. Polar species may be sensitive to warming and ice loss, but data are scarce and evidence is conflicting2,3,4. Here, we show that, within their main population centre in the southwest Atlantic sector, the distribution of Euphausia superba (hereafter, ‘krill’) has contracted southward over the past 90 years. Near their northern limit, numerical densities have declined sharply and the population has become more concentrated towards the Antarctic shelves. A concomitant increase in mean body length reflects reduced recruitment of juvenile krill. We found evidence for environmental controls on recruitment, including a reduced density of juveniles following positive anomalies of the Southern Annular Mode. Such anomalies are associated with warm, windy and cloudy weather and reduced sea ice, all of which may hinder egg production and the survival of larval krill5. However, the total post-larval density has declined less steeply than the density of recruits, suggesting that survival rates of older krill have increased. The changing distribution is already perturbing the krill-centred food web6 and may affect biogeochemical cycling7,8. Rapid climate change, with associated nonlinear adjustments in the roles of keystone species, poses challenges for the management of valuable polar ecosystems3

    Large Vertical Migrations of Pyrosoma atlanticum Play an Important Role in Active Carbon Transport

    Get PDF
    Pyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 a Pyrosoma atlanticum swarm was sampled in the Tasman Sea. Depth-stratified sampling during the day and night was used to examine the spatial and vertical distribution of P. atlanticum across three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population. P. atlanticum was 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360\ua0mg WW·m, most likely driven by high chlorophyll a concentrations. P. atlanticum exhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000\ua0m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11\ua0mg C·m·d. When abundant, P. atlanticum swarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities

    A Dual-Beam Irradiation Facility for a Novel Hybrid Cancer Therapy

    Full text link
    In this paper we present the main ideas and discuss both the feasibility and the conceptual design of a novel hybrid technique and equipment for an experimental cancer therapy based on the simultaneous and/or sequential application of two beams, namely a beam of neutrons and a CW (continuous wave) or intermittent sub-terahertz wave beam produced by a gyrotron for treatment of cancerous tumors. The main simulation tools for the development of the computer aided design (CAD) of the prospective experimental facility for clinical trials and study of such new medical technology are briefly reviewed. Some tasks for a further continuation of this feasibility analysis are formulated as well.Comment: 18 pages, 3 tables, 8 figures, 50 reference

    Stepping stones towards Antarctica: Switch to southern spawning grounds explains an abrupt range shift in krill

    Get PDF
    Poleward range shifts are a global-scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, together with an adult database, it showed how their range shift is out of step with the pace of warming. During a 70-year period of rapid warming (1920s–1990s), distribution centres of both larvae and adults in the SW Atlantic sector remained fixed, despite warming by 0.5–1.0°C and losing sea ice. This was followed by a hiatus in surface warming and ice loss, yet during this period the distributions of krill life stages shifted greatly, by ~1000 km, to the south-west. Understanding the mechanism of such step changes is essential, since they herald system reorganizations that are hard to predict with current modelling approaches. We propose that the abrupt shift was driven by climatic controls acting on localized recruitment hotspots, superimposed on thermal niche conservatism. During the warming hiatus, the Southern Annular Mode index continued to become increasingly positive and, likely through reduced feeding success for larvae, this led to a precipitous decline in recruitment from the main reproduction hotspot along the southern Scotia Arc. This cut replenishment to the northern portion of the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, a new, southern reproduction area developed after the 1990s, reinforcing the range shift despite the lack of surface warming. New spawning hotspots may provide the stepping stones needed for range shifts into polar regions, so planning of climate-ready marine protected areas should include these key areas of future habitat

    KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016

    Get PDF
    Antarctic krill (Euphausia superba) and salps are major macroplankton contributors to Southern Ocean food webs and krill are also fished commercially. Managing this fishery sustainably, against a backdrop of rapid regional climate change, requires information on distribution and time trends. Many data on the abundance of both taxa have been obtained from net sampling surveys since 1926, but much of this is stored in national archives, sometimes only in notebooks. In order to make these important data accessible we have collated available abundance data (numerical density, no.

    Gut evacuation rate and grazing impact of the krill Thysanoessa raschii and T. inermis

    Get PDF
    Gut evacuation rates and ingestion rates were measured for the krill Thysanoessa raschii and T. inermis in GodthĂ„bsfjord, SW Greenland. Combined with biomass of the krill community, the grazing potential on phytoplankton along the fjord was estimated. Gut evacuation rates were 3.9 and 2.3 h−1 for T. raschii and T. inermis, respectively. Ingestion rates were 12.2 ± 7.5 ”g C mg C−1 day−1 (n = 4) for T. inermis and 4.9 ± 3.2 ”g C mg C−1 day−1 (n = 4) for T. raschii, corresponding to daily rations of 1.2 and 0.5 % body carbon day−1. Clearance experiments conducted in parallel to the gut evacuation experiment gave similar results for ingestion rates and daily rations. Krill biomass was highest in the central part of the fjord’s length, with T. raschii dominating. Community grazing rates from krill and copepods were comparable; however, their combined impact was low, estimated as <1 % of phytoplankton standing stock being removed per day during this late spring study

    Large scale patterns in vertical distribution and behavior of mesopelagic scattering layers

    Get PDF
    Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.En prensa2,927
    • 

    corecore