11 research outputs found
Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries
Measurements in soils have been traditionally used to demonstrate that soil architecture is one of the key drivers of soil processes. Major advances in the use of X-ray Computed Tomography (CT) afford significant insight into the pore geometry of soils, but until recently no experimental techniques were available to reproduce this complexity in microcosms. This article describes a 3D additive manufacturing technology that can print physical structures with pore geometries reflecting those of soils. The process enables printing of replicated structures, and the printing materials are suitable to study fungal growth. This technology is argued to open up a wealth of opportunities for soil biological studies
Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth
Despite the importance of fungi in soil ecosystem services, a theoretical framework that links soil management strategies with fungal ecology is still lacking. One of the key challenges is to understand how the complex geometrical shape of pores in soil affects fungal spread and species interaction. Progress in this area has long been hampered by a lack of experimental techniques for quantification. In this paper we use X-ray computed tomography to quantify and characterize the pore geometry at microscopic scales (30 μm) that are relevant for fungal spread in soil. We analysed the pore geometry for replicated samples with bulk-densities ranging from 1.2–1.6 g/cm3. The bulk-density of soils significantly affected the total volume, mean pore diameter and connectivity of the pore volume. A previously described fungal growth model comprising a minimal set of physiological processes required to produce a range of phenotypic responses was used to analyse the effect of these geometric descriptors on fungal invasion, and we showed that the degree and rate of fungal invasion was affected mainly by pore volume and pore connectivity. The presented experimental and theoretical framework is a significant first step towards understanding how environmental change and soil management impact on fungal diversity in soils
Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity
The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach
Figshare Leicester Research Archive: advocacy briefing
This advocacy briefing was produced in January 2021 and it provides information on the timeline of the research data management (RDM) project which delivered and implemented a new Figshare-powered research discovery platform at the University of Leicester
Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity
International audienceThe pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach
Mesophyll porosity is modulated by the presence of functional stomata
The formation of stomata and leaf mesophyll airspace must be coordinated to establish an efficient and robust network that facilitates gas exchange for photosynthesis, however the mechanism by which this coordinated development occurs remains unclear. Here, we combine microCT and gas exchange analyses with measures of stomatal size and patterning in a range of wild, domesticated and transgenic lines of wheat and Arabidopsis to show that mesophyll airspace formation is linked to stomatal function in both monocots and eudicots. Our results support the hypothesis that gas flux via stomatal pores influences the degree and spatial patterning of mesophyll airspace formation, and indicate that this relationship has been selected for during the evolution of modern wheat. We propose that the coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops, providing a target for future improvement
Mesophyll porosity is modulated by the presence of functional stomata
The formation of stomata and leaf mesophyll airspace must be coordinated to establish an efficient and robust network that facilitates gas exchange for photosynthesis, however the mechanism by which this coordinated development occurs remains unclear. Here, we combine microCT and gas exchange analyses with measures of stomatal size and patterning in a range of wild, domesticated and transgenic lines of wheat and Arabidopsis to show that mesophyll airspace formation is linked to stomatal function in both monocots and eudicots. Our results support the hypothesis that gas flux via stomatal pores influences the degree and spatial patterning of mesophyll airspace formation, and indicate that this relationship has been selected for during the evolution of modern wheat. We propose that the coordination of stomata and mesophyll airspace pattern underpins water use efficiency in crops, providing a target for future improvement
Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity
The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach