95 research outputs found

    1D-confinement of polyiodides inside single-wall carbon nanotubes

    Get PDF
    International audience1D-confinement of polyiodides inside single-wall carbon nanotubes (SWCNT) is investigated. Structural arrangement of iodine species as a function of the SWCNT diameters is studied. Evidence for long range one dimensional ordering of the iodine species is shown by X-ray and electron diffraction experiments independently of the tube diameter. The structure of the confined polyiodides is investigated by X-ray absorption spectroscopy. The confinement influences the local arrangement of the chains. Below a critical diameter Fc of 1 nm, long linear polyiodides are evidenced leading to a weaker charge transfer than for nanotube diameter above Fc. A shortening of the polyiodides is exhibited with the increase of the nanotube diameter leading to a more efficient charge transfer. This point reflects the 1D-confinement of the polyiodides inside the nanotubes

    Imogolite nanotubes: a 2D x-ray scattering study of films of oriented samples

    Get PDF
    International audienceInorganic nanotubes represent an emerging class of nanobuilding blocks. Among them, imogolites are alumino-silicate or alumino-germanate nanotubes with well controlled diameter and helicity. As such, they constitute a model platform for the study of molecular interactions and confinement at the nanoscale, complementing the one constituted by carbon nanotubes. We focus here on double-walled alumino-germanate nanotubes, discovered very recently [1]. They are formed of two concentric tubes (figure inset), with respective internal diameters of 1.6 and 3.1nm and up to 1 micron in length [2]. We report the first experimental study, using wide angle x-ray scattering, performed on films of oriented nanotubes (figure). Structural changes of the nanotubes and behavior of the confined water under heating are investigated in-situ. The study of oriented samples gives new information that is not available with powder diffraction. Above all, the contribution to the scattering signal of internal and external tubes can be separated as well as the translational/rotational correlations. The use of wide image plate detectors allows one to access large area of the reciprocal space in a single image. Simulations of the two-dimensionnal scattering diagrams will be presented. A key question, the correlation between internal and external tube, which is of great interest for understanding friction properties at the nanoscale, will be discussed

    Interferon-Îł induced expression of MHC antigens facilitates identification of donor cells in chimeric transplant recipients

    Get PDF
    After whole organ transplantation, donor bone marrow-derived cells migrate out of the graft into the recipient, leading to establishment of chimerism, which is the first step towards the subsequent induction of donor-specific tolerance. In routine immunohistochemical staining, monoclonal antibodies specific for heterotopic MHC alleles are used to identify donor and recipient cells. However, it is difficult to detect these cells using this technique in long-term allograft recipients who have a persistently low donor cell population (microchimerism). Because Interferon-gamma (IFN-Îł) is known to induce expression of MHC class I and class II cell surface molecules, we used this cytokine 12-48 h before sacrifice, to facilitate the identification of donor and recipient cells in the tissues of animals transplanted with either liver (B10 → C3H) or bone marrow (LEW → BN). In long-term allograft recipients, the use of IFN-Îł for as briefly as 12 h prior to sacrifice, results in marked upregulation of class I and class II antigens, leading to easy identification of ubiquitously distributed low numbers of donor cells. © 1994

    The quasi-universality of nestedness in the structure of quantitative plant-parasite interactions

    Get PDF
    Understanding the relationships between host range and pathogenicity for parasites, and between the efficiency and scope of immunity for hosts are essential to implement efficient disease control strategies. In the case of plant parasites, most studies have focused on describing qualitative interactions and a variety of genetic and evolutionary models has been proposed in this context. Although plant quantitative resistance benefits from advantages in terms of durability, we presently lack models that account for quantitative interactions between plants and their parasites and the evolution of these interactions. Nestedness and modularity are important features to unravel the overall structure of host-parasite interaction matrices. Here, we analysed these two features on 32 matrices of quantitative pathogenicity trait data gathered from 15 plant-parasite pathosystems consisting of either annual or perennial plants along with fungi or oomycetes, bacteria, nematodes, insects and viruses. The performance of several nestedness and modularity algorithms was evaluated through a simulation approach, which helped interpretation of the results. We observed significant modularity in only six of the 32 matrices, with two or three modules detected. For three of these matrices, modules could be related to resistance quantitative trait loci present in the host. In contrast, we found high and significant nestedness in 30 of the 32 matrices. Nestedness was linked to other properties of plant-parasite interactions. First, pathogenicity trait values were explained in majority by a parasite strain effect and a plant accession effect, with no parasite-plant interaction term. Second, correlations between the efficiency and scope of the resistance of plant genotypes, and between the host range breadth and pathogenicity level of parasite strains were overall positive. This latter result questions the efficiency of strategies based on the deployment of several genetically-differentiated cultivars of a given crop species in the case of quantitative plant immunity

    Continuous binder-free fibers of pure imogolite nanotubes

    No full text
    Imogolite nanotubes display a range of useful properties and provide an ideal material system to study the assembly of nanomaterials into macroscopic fibers. A method of wet spinning pure, binder-free imogolite fibers has been developed using double walled germanium imogolite nanotubes. Nanotube aspect ratio can be controlled during the initial synthesis and is critical to the spinning process. Fibers made from short nanotubes (<100 nm) have very low gel strengths, whilst dopes with longer nanotubes (500-1000 nm) are readily spinnable. The tensile behaviour of the resulting imogolite nanotube fibers is strongly influenced by relative humidity (RH), with a modulus of 30 GPa at 10% RH compared to 2.8 GPa at 85% RH, as well as a change in failure mode. This result highlights the importance of inter nanotube interactions in such assemblies and provides a useful strategy for further exploration. Interestingly, in the absence of a matrix phase, a degree of misorientation appears to improve load transfer between the individual INTs within the porous fiber, likely due to an increase of the number of inter-particle contacts. Imogolite nanotubes are an appealing analogue to other nanotube fiber systems, and it is hoped that learnings from this system can also be used to improve carbon nanotube fibers

    Wet spinning imogolite nanotube fibres: an in situ process study

    No full text
    Imogolite nanotubes (INTs) form transparent aqueous nematic solutions, with strong birefringence and X-ray scattering power. They provide an ideal model system for studying the assembly of one-dimensional nanomaterials into fibres, as well as offering interesting properties in their own right. Here, in-situ polarised optical microscopy is used to study the wet spinning of pure INTs into fibres, illustrating the influence of process variables during extrusion, coagulation, washing and drying on both structure and mechanical properties. Tapered spinnerets were shown to be significantly more effective than thin cylindrical channels for forming homogeneous fibres; a result related to simple capilliary rheology by fitting a shear thinning flow model. The washing step has a strong influence of structure and properties, combining the removal of residual counter-ions and structural relaxation to produce a less aligned, denser and more networked structure; the timescales and scaling behviour of the processes are compared quantitatively. Both strength and stiffness are higher for INT fibres with a higher packing fraction and lower degree of alignment, indicating the importance of forming a rigid jammed network to transfer stress through these porous, rigid rod assemblies. The electrostatically-stabilised, rigid rod INT solutions were successfully cross-linked using multivalent anions, providing robust gels, potentially useful in other contexts
    • 

    corecore