
                          Ganley, W. J., & Van Duijneveldt, J. S. (2015). Controlling Clusters of
Colloidal Platelets: The Effects of Edge and Face Surface Chemistries on the
Behaviour of Montmorillonite Suspensions. Langmuir, 31(15), 4377-4385.
10.1021/acs.langmuir.5b00047

Peer reviewed version

Link to published version (if available):
10.1021/acs.langmuir.5b00047

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

http://dx.doi.org/10.1021/acs.langmuir.5b00047
http://research-information.bristol.ac.uk/en/publications/controlling-clusters-of-colloidal-platelets(75b4bbc6-924e-42e0-8698-ae1243091076).html
http://research-information.bristol.ac.uk/en/publications/controlling-clusters-of-colloidal-platelets(75b4bbc6-924e-42e0-8698-ae1243091076).html


Supporting information for:

Controlling Clusters of Colloidal Platelets: The

Effects of Edge and Face Surface Chemistries on

the Behaviour of Montmorillonite Suspensions

W. J. Ganley and J. S. van Duijneveldt∗

School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.

E-mail: J.S.Van-Duijneveldt@bristol.ac.uk

Oscillatory Rheology of Montmorillonite Suspensions

Figures S1 to S3 show oscillatory frequency sweeps of montmorillonite suspensions at a

range of ionic strengths and weight fractions. These were used to construct rheological

phase diagrams in the main report.
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Figure S1: Rheological frequency sweeps for montmorillonite suspensions at (a) 2% wt., (b)
3% wt., (c) 4% wt. and (d) 5% wt. with Na+ concentrations of 10−5 M (diamonds), 10−4 M
(down triangles), 10−3 M (up triangles), 10−2 M (circles) and 10−1 M (squares). Closed
symbols denote elastic moduli G′ and open symbols denote viscous moduli G′′
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Figure S2: Rheological frequency sweeps for montmorillonite suspensions with 340 µmol g−1

M1000. Symbols as in figure S1
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Figure S3: Rheological frequency sweeps for montmorillonite suspensions with Na4P2O7 in
place of NaCl. Symbols as in figure S1

Small Angle Light Scattering

Figure S4 shows small angle light scattering (SALS) data from 0.25% wt. montmorillonite

suspensions at Na+ concentrations of 10−5 M, 10−3 M and 10−2 M. Table S1 shows the

results of fits to the Fisher-Burford model for all SALS curves and table S2 shows the %

transmissions for each sample compared to water.
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Figure S4: SALS of 0.25% wt. montmorillonite suspensions with 10−5 M added Na+ (upper
left), 10−3 M added Na+ (upper right) and 10−2 M added Na+ (lower). Untreated montmo-
rillonite (black squares), with 340 µmol g−1 M1000 (grey triangles) and with Na4P2O7 (open
circles). Solid lines on M1000 datasets are fits to the Fisher-Burford model.
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Table S1: Results of Fisher-Burford fits to SALS of all measured systems. Numbers corre-
spond to Rg values from Fisher-Burford fits, hyphens to Q−1 power law forms and asterisks
to scattering that deviates from the Q−1 power law but does not fit the Fisher-Burford form

CNa+ (M) Untreated M1000 Pyrophosphate
10−5 * 478 ± 4 -
10−4 - 482 ± 2 -
10−3 - 473 ± 4 -
10−2 * 526 ± 3 -
10−1 552 ± 3 * *

Table S2: Percentage light transmitted through samples in small angle light scattering

Surface Chemistry CNa+ (M) % Transmission
Untreated 10−5 95.0

10−4 93.7
10−3 92.9
10−2 92.7
10−1 91.1

M1000 treated 10−5 88.6
10−4 88.1
10−3 88.0
10−2 87.4
10−1 81.9

Pyrophosphate treated 10−5 93.8
10−4 94.6
10−3 93.9
10−2 92.9
10−1 92.2
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Suspension Birefringence

A selection of the samples used in rheological measurements were observed through crossed

polarisers to detect the alignment of platelets.

10-5 10-3 10-1

CNa+ (M)
Untreated

CNa+ (M)
10-5 10-3 10-1

M1000
CNa+ (M)

10-5 10-3 10-1

Pyrophosphate

Figure S5: 4 % wt. montmorillonite suspensions from rheological experiments viewed be-
tween crossed polarisers

Figure S5 shows birefringence in all samples after the samples are inverted with all three

surface treatments across the full range of CNa+ . The presence of birefringence in all samples

is consistent with the existence of platelets that have not undergone extensive aggregation.

Wall Slip Analysis

The rheological measurements detailed in this report were carried out using two different

upper geometries: a 4o/40 mm cone and a 20 mm plate. Before using the two geometries

the extent of wall slip was examined. This was done by comparing frequency sweeps of a

3% wt. montmorillonite suspension in 10−3 M NaCl using the cone and plate at a gap width

of 150 µm and the parallel plates at gap widths ranging from 0.5 - 3 mm. Apart from the
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geometry used the procedure was identical to that detailed in the main report.
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Figure S6: Rheological frequency sweeps for 3% wt. montmorillonite suspensions in 10−3 M
NaCl using: cone and plate at a gap width of 0.15 mm (closed squares), parallel plates at
gap widths of 0.50 mm (open squares), 1.00 mm (open circles), 2.00 mm (open triangles)
and 3.00 mm (open diamonds)

Figure S6 shows that use of the parallel plates showed no systematic increase in modulus

as gap width increased, suggesting minimal wall slip, whereas the use of the larger diameter

cone and plate geometry showed a slightly lower modulus, suggestive of greater slip. The

cone and plate geometry did, however allow measurements at higher frequencies due to a

lower inertial component associated with the upper cone than the upper plate.

Quantitative measurements of plateau elastic moduli were therefore carried out using the

parallel plate geometry at a gap width of 1 mm where slip was minimal, and hence measured

moduli were more accurate, whereas for qualitative measurements, those used to define the

rheological state of the systems (figures S1 to S3), were carried out using the cone and plate

geometry as for those measurements a higher range of frequencies was desirable.
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