380 research outputs found

    Laboratory Studies Of The Acoustic Properties Of Samples From The Salton Sea Scientific Drilling Project And Their Relation To Microstructure And Field Measurements

    Get PDF
    Compressional and shear wave velocities were measured at confining pressures up to 200 MPa for twelve core samples from the depth interval of 600 to 2600 m in the California State 2-14 borehole. Samples were selected to represent the various lithologies, including clean, heavily cemented sandstones, altered, impermeable claystones, and several intermediate siltstones. Velocities measured at ultrasonic frequencies in the laboratory correspond closely with velocities determined from acoustic waveform logs and vertical seismic profiles. The samples exhibit P-wave velocities around 3.5 km/sec at depths above 1250 m, but increase to nearly 5.0 km/sec at 1300 m in depth. Further increases with depth result in compressional wave velocity increasing to nearly 6.0 km/sec. These increases in velocities are related to systematic variations in lithology, microstructure and hydrothermal alteration of originally clay-rich sediments. Scanning electron microscope observations of core samples confirm that local core velocities are determined by the combined effects of pore size distributions, and the proportion of clays and alteration minerals such as epidote present in the form of pore fillings and veins.United States. Dept. of the Interior. Geological Survey (Grant 14-08-001A-0328)Elf-Aquitaine (Postdoctoral Fellowship

    Raman excitation spectroscopy of carbon nanotubes: effects of pressure medium and pressure

    Full text link
    Raman excitation and emission spectra for the radial breathing mode (RBM) are reported, together with a preliminary analysis. From the position of the peaks on the two-dimensional plot of excitation resonance energy against Raman shift, the chiral indices (m, n) for each peak are identified. Peaks shift from their positions in air when different pressure media are added - water, hexane, sulphuric acid - and when the nanotubes are unbundled in water with surfactant and sonication. The shift is about 2 - 3 cm-1 in RBM frequency, but unexpectedly large in resonance energy, being spread over up to 100meV for a given peak. This contrasts with the effect of pressure. The shift of the peaks of semiconducting nanotubes in water under pressure is orthogonal to the shift from air to water. This permits the separation of the effects of the pressure medium and the pressure, and will enable the true pressure coefficients of the RBM and the other Raman peaks for each (m, n) to be established unambiguously.Comment: 6 pages, 3 Figures, Proceedings of EHPRG 2011 (Paris

    Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing

    Get PDF
    International audienceWe show how fully distributed space-time measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber-optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross-flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole abstraction borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer

    Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    Get PDF
    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health

    Contrôle du remplissage détritique tardiglaciaire à holocène d'une haute vallée alpine par les dynamiques de versant : l'exemple de la moyenne Maurienne (Savoie).

    Get PDF
    Les cônes de déjection constituent le trait morphologique majeur de l'étroite vallée de l'Arc (Savoie), entre les ombilics de Saint-Jean-de-Maurienne et Saint-Michel-de-Maurienne. Une reconstitution géométrique des différents corps sédimentaires constitutifs de ces cônes a été rendue possible grâce à la corrélation de données géomorphologiques, à la synthèse des données de forages de diverses campagnes de reconnaissance pour EDF et Alpetunnel et à l'utilisation de données géophysiques. Un calage stratigraphique a été établi à partir de datations de bois fossilisés puis une évolution paléogéographique est proposée. Elle montre que, dans cette gorge de raccordement, le remplissage tardiglaciaire à holocène est fortement contrôlé par les dépôts torrentiels latéraux, des coulées boueuses, des écroulements rocheux massifs et glissements de terrain. En barrant cette étroite vallée, ces dépôts gravitaires favorisent localement une sédimentation lacustre

    O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation

    Get PDF
    In this work we present a combined experimental and ab initio simulation investigation concerning the Germanium Lone Pair Center (GLPC), its interaction with molecular oxygen (O2), and evolution under irradiation. First, O2 loading has been applied here to Ge-doped optical fibers to reduce the concentration of GLPC point defects. Next, by means of cathodoluminescence in situ experiments, we found evidence that the 10 keV electron irradiation of the treated optical fibers induces the generation of GLPC centers, while in nonloaded optical fibers, the irradiation causes the bleaching of the pre-existing GLPC. Ab initio calculations were performed to investigate the reaction of the GLPC with molecular oxygen. Such investigations suggested the stability of the dioxagermirane (DIOG) bulk defect, and its back conversion into GLPC with a local release of O2 under irradiation. Furthermore, it is also inferred that a remarkable portion of the O2 passivated GLPC may form Ge tetrahedra connected to peroxy bridges. Such structures may have a larger resistance to the irradiation and not be back converted into GLPC
    corecore