55 research outputs found

    Stress tolerance and hardiness of woody ornamentals

    Get PDF

    Seed Dispersal by Rooks (Corvus frugilegus) -with Focus on Non-Native Species

    Get PDF
    Seed dispersal is an essential ecological function, and many plants depend on dispersal mediated by animals (zoochory). Zoochory is important for the natural succession and regeneration of plant communities but may also play a role in the dispersal of non-native and invasive species with damaging ecosystem effects. The rook (Corvus frugilegus) is an omnivorous species eating a broad variety of seeds and therefore potential to disperse a wide range of seeds in both natural and urban habitats. In this study seed dispersal by rooks in Central and Northern Jutland, Denmark was examined through examination of regurgitation pellets and vegetation studies. The aim of the study was to investigate i) to what extent rook regurgitation pellets found under rookeries contain seeds; ii) which seed species are found, including whether pellets contain seeds of non-native species; iii) if the plant species found in the regurgitated pellets were found in the vegetation under rookeries. Regurgitation pellets were collected from April to June beneath rookeries. In total 124 seeds representing 8 taxa were found in 153 pellets. Most of the seed species were cereals and other dry-fruited species, mainly weeds and ruderal species. The study showed that Danish rooks canact as seed dispersers. Cereals and other dry-fruited species such as weeds, and ruderal species were the dominant seeds found in rook pellets. No non-native species were found. However, this does not exclude the possibility of the rooks being able to disperse them. The lack of exotic fruit found in the pellets of Danish rooks may be due to waste management in Denmark, not having open waste dumps and open compost heaps with spill overs from the kitchen is not recommended. A vegetation survey under rookeries showed that only Stellaria media was found both in regurgitation pellets and in the vegetation beneath rookeries, suggesting that many dispersed seeds are unable to germinate or survive under the tree canopies at the rookeries

    Cold stress and freezing tolerance negatively affect the fitness of Arabidopsis thaliana accessions under field and controlled conditions

    Get PDF
    MAIN CONCLUSION: Higher acclimated freezing tolerance improved winter survival, but reduced reproductive fitness of Arabidopsis thaliana accessions under field and controlled conditions. ABSTRACT: Low temperature is one of the most important abiotic factors influencing plant fitness and geographical distribution. In addition, cold stress is known to influence crop yield and is therefore of great economic importance. Increased freezing tolerance can be acquired by the process of cold acclimation, but this may be associated with a fitness cost. To assess the influence of cold stress on the fitness of plants, long-term field trials over 5 years were performed with six natural accessions of Arabidopsis thaliana ranging from very tolerant to very sensitive to freezing. Fitness parameters, as seed yield and 1000 seed mass, were measured and correlation analyses with temperature and freezing tolerance data performed. The results were compared with fitness parameters from controlled chamber experiments over 3 years with application of cold priming and triggering conditions. Winter survival and seed yield per plant were positively correlated with temperature in field experiments. In addition, winter survival and 1000 seed mass were correlated with the cold-acclimated freezing tolerance of the selected Arabidopsis accessions. The results provide strong evidence for a trade-off between higher freezing tolerance and reproductive fitness in A. thaliana, which might have ecological impacts in the context of global warming. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00425-021-03809-8

    Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in <i>Arabidopsis thaliana, Drosophila melanogaster</i>, and <i>Orchesella cincta</i>

    Get PDF
    Temperature varies on a daily and seasonal scale and thermal fluctuations are predicted to become even more pronounced under future climate changes. Studies suggest that plastic responses are crucial for species' ability to cope with thermal stress including variability in temperature, but most often laboratory studies on thermal adaptation in plant and ectotherm organisms are performed at constant temperatures and few species included. Recent studies using fluctuating thermal regimes find that thermal performance is affected by both temperature mean and fluctuations, and that plastic responses likely will differ between species according to life strategy and selective past. Here we investigate how acclimation to fluctuating or constant temperature regimes, but with the same mean temperature, impact on heat stress tolerance across a plant (Arabidopsis thaliana) and two arthropod species (Orchesella cincta and Drosophila melanogaster) inhabiting widely different thermal microhabitats and with varying capability for behavioral stress avoidance. Moreover, we investigate the underlying metabolic responses of acclimation using NMR metabolomics. We find increased heat tolerance for D. melanogaster and A. thaliana exposed to fluctuating acclimation temperatures, but not for O. cincta. The response was most pronounced for A. thaliana, which also showed a stronger metabolome response to thermal fluctuations than both arthropods. Generally, sugars were more abundant across A. thaliana and D. melanogaster when exposed to fluctuating compared to constant temperature, whereas amino acids were less abundant. This pattern was not evident for O. cincta, and generally we do not find much evidence for similar metabolomics responses to fluctuating temperature acclimation across species. Differences between the investigated species' ecology and different ability to behaviorally thermoregulate may have shaped their physiological responses to thermal fluctuations

    Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana

    Get PDF
    Background: During low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation.Results: We report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24 h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4 °C back to warm temperature (20 °C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation.Conclusions: This study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes

    Consistent diurnal pattern of leaf respiration in the light among contrasting species and climates

    Get PDF
    Leaf daytime respiration (leaf respiration in the light, R (L)) is often assumed to constitute a fixed fraction of leaf dark respiration (R (D)) (i.e. a fixed light inhibition of respiration (R (D))) and vary diurnally due to temperature fluctuations. These assumptions were tested by measuring R (L), R (D) and the light inhibition of R (D) in the field at a constant temperature using the Kok method. Measurements were conducted diurnally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid continental and humid subtropical climates. R (L) and R (D) showed significant diurnal variations and the diurnal pattern differed in trajectory and magnitude between climates, but not between plant functional types (PFTs). The light inhibition of R (D) varied diurnally and differed between climates and in trajectory between PFTs. The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and that time of day should be accounted for in studies seeking to examine the environmental and biological drivers of leaf daytime respiration

    Transcriptional and Post-Transcriptional Regulation and Transcriptional Memory of Chromatin Regulators in Response to Low Temperature

    Get PDF
    Chromatin regulation ensures stable repression of stress-inducible genes under non-stress conditions and transcriptional activation and memory of stress-related genes after stress exposure. However, there is only limited knowledge on how chromatin genes are regulated at the transcriptional and post-transcriptional level upon stress exposure and relief from stress. We reveal that the repressive modification histone H3 lysine 27 trimethylation (H3K27me3) targets genes which are quickly activated upon cold exposure, however, H3K27me3 is not necessarily lost during a longer time in the cold. In addition, we have set-up a quantitative reverse transcription polymerase chain reaction-based platform for high-throughput transcriptional profiling of a large set of chromatin genes. We find that the expression of many of these genes is regulated by cold. In addition, we reveal an induction of several DNA and histone demethylase genes and certain histone variants after plants have been shifted back to ambient temperature (deacclimation), suggesting a role in the memory of cold acclimation. We also re-analyze large scale transcriptomic datasets for transcriptional regulation and alternative splicing (AS) of chromatin genes, uncovering an unexpected level of regulation of these genes, particularly at the splicing level. This includes several vernalization regulating genes whose AS may result in cold-regulated protein diversity. Overall, we provide a profiling platform for the analysis of chromatin regulatory genes and integrative analyses of their regulation, suggesting a dynamic regulation of key chromatin genes in response to low temperature stress
    • …
    corecore