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Summary
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o Leaf daytime respiration (leaf respiration in the light, R)) is often assumed to constitute a
fixed fraction of leaf dark respiration (Rp) (i.e. a fixed light inhibition of respiration (Rp)) and
vary diurnally due to temperature fluctuations.

e These assumptions were tested by measuring R, Rp and the light inhibition of Rp in the
field at a constant temperature using the Kok method. Measurements were conducted diur-
nally on 21 different species: 13 deciduous, four evergreen and four herbaceous from humid
continental and humid subtropical climates.

¢ R and Rp showed significant diurnal variations and the diurnal pattern differed in trajectory
and magnitude between climates, but not between plant functional types (PFTs). The light
inhibition of Rp varied diurnally and differed between climates and in trajectory between
PFTs.

e The results highlight the entrainment of leaf daytime respiration to the diurnal cycle and
that time of day should be accounted for in studies seeking to examine the environmental and
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Introduction

Terrestrial plants are estimated to fix 120 Gt carbon (C) every
year through photosynthesis and roughly 30 Gt C is emitted to
the atmosphere through leaf respiration (Prentice ez @/, 2001).
This C efflux is approximately three times larger than current
emissions from burning of fossil fuels globally (Canadell ez af,
2007; Le Quéré et al., 2009; Friedlingstein er al., 2020). How-
ever, current modelling of leaf respiration C fluxes is considered
inadequate, leading to uncertain estimates of future climate and
vegetation dynamics (Gifford, 2003; Leuzinger & Thomas,
2011; Huntingford ez al., 2013; Smith & Dukes, 2013; Lombar-
dozzi et al., 2015).

Inadequate representation of leaf respiration in current mod-
elling approaches is related to incomplete understanding of the
environmental and biological controls of leaf daytime respiration
(Kruse et al., 2011; Seatle ez al., 2011; Huntingford ez al., 2013;
Kornfeld ez al., 2013; Tcherkez ez al., 2017a,b). Leaf respiration
is often measured during the day using darkened chambers (Rp)
(Atkin er al., 2015). However, rates of leaf respiration in the light
(Ry) are often substantially lower than those in darkness (Amthor
& Baldocchi, 2001; Janssens et al., 2001; Morgenstern ez al.,
2004; Wohlfahrt et al, 2005; Bruhn et al, 2011; Bathellier
et al., 2017). Failure to consider this light inhibition of

© 2022 The Authors
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biological drivers of leaf daytime respiration.

respiration (Rp) can lead to overestimates of daily respiratory
fluxes in individual leaves (Atkin et 2/, 2006), and thus have
implications for our understanding of how environmental and
biological factors drive leaf daytime respiration.

The light inhibition of Ry can depend on temperature (Atkin
et al., 2000, 2006; Griffin & Turnbull, 2013; Way & Yamori,
2014), drought (Ayub ez al., 2011; Crous et al., 2012; Sperlich ez
al., 2016), CO, (Shapiro er al., 2004; Ayub et al., 2014), long-
term growth temperature (Heskel ez 4/, 2014; McLaughlin ez al.,
2014), soil nutrient availability (Heskel ez al., 2012; Atkin ez al.,
2013), season (Way et al., 2015) and plant functional type (PFT)
(Heskel et al, 2012, 2014; Crous et al, 2017a).
approaches account for the light inhibition of Rp by assuming R

Some

constitutes a fixed fraction of Rp. For example, the terrestrial bio-
sphere model (TBM) Joint UK Land Environmental Simulator
(JULES) model assumes Rp is 30% inhibited when light is avail-
able (Cox, 2001; Clark et al, 2011). Although several studies
demonstrate a mean light inhibition of ¢ 30% (Budde & Ran-
dall, 1990; Tcherkez ez 4l., 2005, 2009, 2012b, 2017a; Buckley
& Adams, 2011; Heskel ez al, 2013; Kroner & Way, 2016), the
light inhibition of Ry can vary between 0 and 100% (Atkin er 4/,
2006; Zaragoza-Castells ez al., 2007; Crous ez al., 2012; Heskel
et al., 2013; Way et al., 2019) and occasionally R even exceeds
Rp (Zaragoza-Castells et al, 2007; Crous et al, 2017a).
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Studying temporal patterns of & and Rp could shed light on the
validity of the assumption of a fixed proportion of light inhibi-
tion of Rp and provide further insight into daytime leaf respira-
tion.

Leaf respiration varies diurnally due to temperature fluctua-
tions and is a key driver in modelled respiration (Running &
Coughlan, 1988; Raich et a/, 1991; Melillo ez al., 1993; Cox,
2001; Clark et al, 2011; Oleson et al., 2013). However, leaf res-
piration may also be influenced by antecedent conditions. The
amount of substrate available for respiration often directly relates
to light intensity and photosynthesis (Hégberg & Read, 2006).
Substrate supply and demand processes for respiration can vary
within hours depending on the environment (Trumbore, 2006;
Hagedorn ez al,, 2016; O’Leary et al., 2019). Leaf respiration
may also be under circadian regulation as protein expressions of
enzymes central to respiration show diurnal rhythmicity (Wijnen
& Young, 2006) and some indirect evidence, provided by statisti-
cal filtering techniques, shows that daytime net ecosystem CO,
exchange is affected by circadian regulation (Doughty ez al,
2006; Resco de Dios et al., 2012).

If leaf respiration is under circadian regulation, and/or is
dependent on previous environmental and leaf physiological con-
ditions, leaf respiration will depend on the time of day even if the
temperature is held constant. In addition, as R and Ry often re-
spond differently to changes in the growth environment (Atkin
et al., 2005; Zaragoza-Castells et al, 2007; McLaughlin ez 4/,
2014; Kroner & Way, 2016; Crous ez al., 2017b), time of day
could affect R and Rp differently. Given that the environment
differs significantly between climates, and that rhythms in plant
physiological processes are entrained by environmental cues such
as light and temperature (Resco de Dios & Gessler, 2018), the
effect of time of day on leaf respiration may vary between cli-
mates.

Respiratory fluxes differ among cooccurring species and
PFTs under field conditions (Bolstad ez al, 2003; Tjoelker
et al., 2005; Turnbull ez al, 2005; Heskel et al., 2012, 2014;
Slot et al., 2013; Crous et al, 2017a) and under controlled
environments (Reich ez al, 1998; Loveys er al, 2003; Xiang
et al., 2013), suggesting strong genetic control of respiratory
fluxes. Hence, effects of time of day on R, Rp and the light
inhibition of Rp may be a function of PFTs and species. The
consequences of time of day on leaf respiration and the magni-
tude of effects are currently unknown and could potentally be
an important source of variation in leaf respiration. If true,
time of day should be accounted for in measurements and
models of respiration.

The aim of this study was to examine whether leaf daytime
Rp, Ry and the light inhibition of Rp exhibit diurnal variation
when measured at a constant temperature in the field, and to
determine whether this diurnal variation differs between cli-
mates and PFTs. The measurements were conducted using the
Kok method (Kok, 1948) on 21 different species, including 13
deciduous, four evergreen and four herbaceous species from two
contrasting climates: a humid continental and a humid subtrop-
ical. The validity of the Kok method as a reliable estimator of
Ry has been under much debate (Buckley et al., 2017; Farquhar
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& Busch, 2017; Gauthier ez al., 2020; Yin et al., 2020) as esti-
mates of R using the method are influenced by increasing CO,
concentrations at the sites of carboxylation (C.), caused by
decreasing stomatal conductance (g) and mesophyll conduc-
tance (g,) at decreasing irradiance levels, and by changes in the
quantum yield (¢pPsIl) (Yin er al, 2011; Farquhar & Busch,
2017). However, the Kok method is currently viewed as a proxy
for R (Gauthier et al, 2020; Yin et al, 2020), and was used
here because of its field applicability compared to other meth-
ods, and because over 800 published papers have used or cited
the method, which is ¢. 40% of all studies involved with day-
time respiration (Tcherkez er al, 2017a). It was hypothesized
that: the basal rate of R, Ry and the light inhibition of Rp,
estimated with the Kok method, exhibit diurnal variations when
measured at constant leaf temperature in the field; and the diur-
nal variations of the basal rate of R, Rp and the light inhibition
of Rp, estimated with the Kok method, are different between
climates and PFTs.

Materials and Methods

Study sites and climate conditions

The study took place in Denmark and Australia from 2019 to
2021. The measurements conducted in Denmark were collected
from 31 August 2019 to 12 October 2019 in a mixed deciduous
forest in northern Jutland (56°45'32"N, 10°12'4"E, 8 m above
sea level (asl)) and again from 30 July 2021 to 30 August 2021 in
another nearby mixed deciduous forest (56°40'59"N, 10°10'34"E,
20 m asl). The soil is a glacial outwash plain at both locations.
In Australia, the measurements were conducted at the Hawkes-
bury Forest Experiment (HFE) site in Richmond, New South
Wales (33°36'40”S, 150°44'26.5"E, 30 m asl) from 11 January
2020 to 29 February 2020 where the soil consists of a low-
fertility sandy loam (Drake ez al, 2016). The climate at the
Danish study sites is humid continental while the climate at the
Australian study site is humid subtropical. Precipitation and
temperature data from 2011 to 2021 and during the time of
data collection can be found in the supplementary site descrip-
tion for the region covering the Danish study sites (Supporting
Information Notes S1 Fig. A—B and G-, respectively) and the
study site in Australia (Notes S1 Fig. C-D and E-F, respec-
tively). In total, 18 mm of rain fell in the summer period from
the start of November 2019 to start of January 2020 at the study
site in Australia, resulting in a significant dry period before the
study period. Watering with cleaned wastewater every fourth day

occurred at the study site in Australia for a subset of the measured
species (Table S1).

Species selection

Twenty-one species in total, representing three PFTs, were
included in the study: 13 deciduous tree species, four evergreen
tree species and four herbaceous species, 10 of which were mea-
sured in Denmark, and the remainder in Australia (Table S1).
For each species, measurements were only performed on

© 2022 The Authors
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individuals which on clear days were exposed to direct sunlight
throughout most of the day.

Leaf gas exchange measurements

Measurements of leaf net CO, exchange (4., pmol CO, m2sh,

stomatal conductance for water vapour (g, mol m~2s7!) and
respiration in the dark were conducted on newly developed,
fully expanded sun-adapted leaves 0.1-2 m above ground level.
Each leaf was measured 3-11 times throughout a single day,
usually before sunrise until after sunset with a period of
35 min to 1 h in between each measurement. The measure-
ments were conducted on at least four replicate plants (one leaf
per plant) of each species under varying weather conditions
(variation in precipitation, cloud cover, wind and temperature).
The leaves within species were selected based on morphological
similarity.

The measurements were conducted using a Li-Cor 6800
portable photosynthesis system (Li-Cor, Lincoln, NE, USA) with
a 6 cm? leaf chamber and a 6800-01A fluorometer set to 69%
red and 31% blue light. On each measurement day, leaf tempera-
ture was preset to a constant temperature (7;,). For the measure-
ments conducted in 2019 in Denmark 7, was set to match the
median air temperature of the day based on weather forecasts,
whereas T, was set a few degrees below the maximum daily air
temperature for the measurements in Australia in 2020 and Den-
mark in 2021. Hence, 7 varied between leaves both within and
between all measured species but was kept constant within each
leaf repeatedly measured throughout the day. The measurements
were conducted using the Kok method with a relative air humid-
ity of 35-80%, a flow rate of 300-350 pmol s~ ! afan speed of
10 000 rpm and a CO; concentration of 410 ppm in the leaf
chamber. The leaf irradiance response of A, was measured from

>s7" down to 0 pmol photons m™* s~

100 pmol photons m™
in steps of 10-12 irradiance levels. Before measuring A, at each
irradiance level, the reference and sample infrared gas analysers
(IRGAs) were automatically matched, and gas exchange fluxes
were given 2—5 min to stabilize. The stabilizing period for the
0 pmol photons m™ s™" irradiance level was increased to 10
min. Gas exchange fluxes were allowed to stabilize before initia-
tion of the light response curve. This stabilization typically

required 2-20 min.

Calculation of leaf light and dark respiration

The Kok method was used to calculate R (pmol CO, m™> ™)
while Rp (pmol CO, m™2 s™') was measured following leaf dark
adaptation. The apparent R was estimated based on the intercept
of a linear regression fitted to the linear region above the Kok
effect and R was determined directly from the CO, efflux in the
dark. When using the Kok method, intercellular CO, concentra-
tion (G, pmol mol™") tends to increase as irradiance decreases,
resulting in reduced photorespiration and increased carboxylation
(Villar et al., 1994). As a result, the slope of A, light response
curves tends to decrease, resulting in the concurrent underestima-

tion of R (Kirschbaum & Farquhar, 1987; Villar et al., 1994).

© 2022 The Authors
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Accordingly, rates of R were corrected for changes in C by itera-
tively forcing the intercept of the quantum yield of RuP, regener-
ation, Vj, against irradiance through the origin. Following this,
V; — Ry was plotted against irradiance and a linear regression was
fitted to the linear region above the Kok effect and extrapolated
to the y-axis yielding the actual R (Fig. S1). Vj was calculated
following Kirschbaum & Farquhar (1987):

%
V. — (Anet + RL) : (1 “cmlv—e?ﬁ-)

J 1 — Fl*eat”l'

Ci

Eqn 1

where I'* (pbar) is the apparent CO, compensation point in the
absence of R (von Caemmerer & Farquhar, 1981) and A4, is
the rate of net CO, exchange at any given irradiance. The G-
based T™* at 25°C (I'}50) was assumed to be 38.6 pbar for all
species, and I'™* at any given leaf temperature (I}, ;) can be calcu-
lated according to Brooks & Farquhar (1985):

[fer = Disee + 1.88 ( Tiear — 25) + 0.036 ( Tiear — 25)°.
Eqn 2

The C-corrected R and the Ry estimated from the CO, efflux
in the dark was subsequently used to calculate the % light inhibi-
tion of Ry as 1 — (R/Rp)100. The rate of gross photosynthesis
(Agrosss pmol CO, m 2 s7') was calculated as R 1o plus A at
the 100 pmol photons m™ s™" irradiance level.

Data analysis

To examine whether R and Rp exhibited diurnal variation mea-
sured at a constant temperature (hereafter denoted as R ., and
Rp 1), all measurements of R 1, and Rp 1, were standardized
by dividing each measurement from a single leaf by the mean Ry
To Of Rpt, measurement of that leaf (i.e. Ryt1,/RiTo and

RpTo/Rp.To, respectively). Diurnal variations in Ry 1o/RLTo
and Rp.1o/Rp o> as well as the % light inhibition of Rp 1, were

examined using generalized additive models (GAMs) with 95%
pointwise confidence intervals fitted with automated smoothness
selection in the MGcv library in R v.4.1.0 (R Core Team, 2021)
with Rstupio v.1.4.1717 (R Studio Team, 2021), using
restricted maximum likelihood (REML) (Wood, 2017). The
GAMs had the following components:
¥, =a+f(x;) +e Eqn 3
where y; is the observation at time x;, @ is the intercept, f(x,) is a
smooth function and ¢; is the residual error. This approach is
nonparametric and makes no a priori assumption about the func-
tional relationship between variables (Wood, 2017), allowing the
depiction of the empirical trend of Ry 1o/ Ry T, and Rp 1o/ RD To
and the % light inhibition of Ry, over time without restric-
tions. The residual variation was assumed to follow a gaussian
distribution, and the residual autocorrelation was modelled by a

continuous time first-order autoregressive process structure
nested within each measured leaf (Pinheiro & Bates, 2000).
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Accordingly, GAMs by the formulation of Eqn 3 were fitted to
Ry 1o/RiTo and RpTo/RpTo and % light inhibition of Ry,
measurements across all measurements, across measurements
within climates (i.e. Australia and Denmark), within PFTs and
within species. As the Ri To/R1To» RbTo/RD.To and the % light
inhibition of Rp T, measurements in Denmark were represented
by nine deciduous tree species and one herbaceous species, the fit-
ting of GAMs to PFTs was restricted to Australia. Significant
diurnal variations of Ry 1o/RLTo» RbTo/RD,To and the % light
inhibition of Rp 1, were determined after computation of the
first derivative (the slope) of the fitted GAMs with the finite dif-
ferences method. The first derivatives were computed with 95%
pointwise confidence intervals, and the trend was deemed signifi-
cant when the derivative confidence interval was bounded away
from zero at the 95% level (for more details on this method, see
Curtis & Simpson, 2014). The percentage total diurnal variation
was calculated from the difference between minimum and maxi-
mum predicted values of Ry To/R1To» RDTo/RDTo and the %
light inhibition of Rp e, divided by the maximum GAM-
predicted values.

Model selection was used to determine whether the diurnal

variation in Ry To/R1To» RDTo/RDTo and % light inhibition of
Rp 1o differed between climates and PFTs (Wieling, 2018).
Models with the structure of Eqn 3 or with PFT or climate
added as a covariate (Eqn 4) and an interaction term (Eqn 5)
were fitted across climates or across all three PFTs in Australia
using the following equations:

yi=a+fx)+K;+e Eqn 4

Vi=a+fle) + Ki+f(x) X kit .o+ f(x) X kni+ €
Eqn 5

where K'is a categorical variable (i.e. climate or PFT) of 7 levels
(ky — k,). The variable £, ; is 1 if an observation is from level £,
and otherwise 0. The models explaining the highest variance with
the minimum number of variables were identified using Akaike’s
information criterion (AIC).

The prediction of Ry 1o/RLTo, RDTo/RD,To and the % light
inhibition of Rp 1, from physiological and external environmen-
tal variables was examined using linear or logarithmic regression
models with 95% pointwise confidence intervals. The ambient
temperature (°C), light intensity (pmol m2 s and water
vapour pressure deficit (VPD; kPa), provided by the climate sta-
tion at HFE in Australia, were averaged for every hour during the
time of measuring a light response curve of 4,... Model assump-
tions of normality and homoscedasticity of residuals were assessed
and verified before analysis.

To examine the potential error of assuming a constant rate of
Ry T, throughout a day, the GAMs that were initially fitted to the
RiTo/RLTo values were used to predict R 1, throughout a day
based on a hypothetical scenario, where an R 1, measurement of
0.76 pmol CO, m™ 5™ (i.e. the mean estimated R, value
across all species in this study) was measured at 08:00 h. Accord-
ingly, temporal GAMs at constant temperature were fitted to the
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Ry To/RiT, values from Australia and Denmark using Eqn 3.
However, for these models we estimated 95% simultaneous con-
fidence intervals from the multivariate normal distribution of the
models that contain 95% of the posterior draws from the esti-
mated models, according to Simpson (2018). Subsequently,
these models were used to predict the R 1, measurement of
0.76 pmol CO, m™? s~ at other times of the day following:

a+fmmqy+@)

a+ f(time,) + €,

RL,Tol‘ = RL,To X ( Eqn 6

where Ry T,; is the predicted rate of respiration at constant tem-
perature at time; Ry T, is the measured R 1, (0.76 pmol
CO, m™? s7') at time, (08:00 h), €, is the residual error at time,
and ¢; is the residual errors at time; Null models (i.e. linear
regression models without a slope) were fitted through the maxi-
mum, mean and minimum predicted values of the temporal
GAMs for Australia and Denmark, and the predicted accumu-
lated CO, throughout a day was calculated for each model. The
percentage predicted difference in accumulated CO, between the
maximum, mean and minimum models compared to the tempo-
ral GAMs was subsequently calculated. Eqn 6 was further
merged with a Q¢ model in order to calculate R 1 (i.e. R under
varying temperature conditions):

ime; . (Ti=To)
Ry, = | Ruto X “ +f(t.lmel) + e X Z(T)
’ ’ a+ f(time,) + €,

Eqn 7

where 2 denotes the factor by which Ry r; changes for every 10°C
temperature change, Ry t; is the predicted rate of respiration at
temperature 7; and 7}, is the temperature at the time where R 1,
was measured. Using Eqn 7, R 1 (i.e. R at different tempera-
tures) was calculated at three different temperature profiles for
both climates. A parametric approach with quadratic linear
regression models and 95% pointwise confidence intervals was
also constructed following:

i i 2 .
Rt = ( Rito x a+ﬂt.1mez' +ﬁ1tfme; +ei) Z(VI_OT))
a+ ﬂtlmex + ﬂltlméx —+ €y

Eqn 8

where a is the model intercept, f and f#, are model coefficients,
and € indicates the residuals, which are assumed to follow a gaus-
sian distribution. Using the guide in Dataset S1 and the R script
(Notes S2), an Ry 1, measurement from any time of the day can
be used to predict R 1 or R 1, with either GAMs or quadratic
linear regression models throughout the day depending on
whether the daily temperature is constant or varying. The tem-
perature profiles were derived from the ambient air temperature
during the time of measuring the light response curves in Aus-
tralia. Quadratic linear regression models were fitted through the
maximum, mean and minimum temperature within 2 h intervals
from 04:00 to 22:00 h from these data, yielding three different
temperature profiles, respectively, which can be viewed in
Fig. S2.

© 2022 The Authors
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Results

Diurnal variation in leaf light and dark respiration

When standardizing R 1, and Rp 1, at the individual leaf level,
Ry, 10/ Ri 1o and Rp 1o/ Rp o increased significantly from sunrise
until morning or early midday, stabilized and then decreased sig-
nificantly from late midday until sunset (Figs 1a,b, S3). Although
Ry1o/RLTo and Rp1o/Rp T, showed significant variations at
approximately the same time of day, the total diurnal variation in
the fitted models was larger for Rpt,/RLT, compared to
Rp.1o/ R0 (38% and 12% change, respectively, Table S2). In
addition, the diurnal patterns showed no linear association with

the various preset constant leaf measurement temperatures

(a)

(7 = 1.234667 x 107>°, P> 0.05 and # = 3.505181 x 107,
P> 0.05, for Ry To/RLTo and RpTo/Rp To, respectively) (Fig.
S4), showing that the diurnal patterns were persistent across a
wide range of leaf temperatures.

The diurnal variation of Ry 1,/RiTo and RpTo/RpTo pet-
sisted when analysing measurements within climates, and this
pattern differed between the climates for both Ry 1,/Ry 1, and
Rp1o/Rp1e (Fig. la,b; Table S3). For Australia, Ry to/RLTo
increased significantly from sunrise until morning, stabilized and

then decreased significantly from early midday until sunset (Fig.
la). By contrast, Rp o/ Rp T, Was stable from sunrise until early
midday, and then decreased significantly undil sunset (Fig. 1b).
In addition, Ry 1o/R1 1o exhibited a larger total variation in the
fitted model compared to Rp1o/Rp 1o (45% and 24% change,

(b)
20

Rp.1o/Rp.T0
— —
o n

o
)

00

Fig. 1 The diurnal variation of (a, c) leaf
respiration in the light (R 10/RL10), (b, d) leaf
dark respiration (Rp10/Rp,70) and (e, f)

the % light inhibition of leaf respiration

(1 = (RL10/Rp,16)100). Generalized additive
models (GAMs) with 95% pointwise
confidence intervals are fitted across (a, b, €)
measurements of 10 field-grown plant
species from Denmark (dark triangles,

n = 295), 11 from Australia (green circles,

n = 270) and across (c, d, f) four deciduous
(dark circles, n = 88), four evergreen (red
squares, n = 115) and three herbaceous
(grey triangles, n = 65) species measured in
Australia. GAMs indicated by the white lines
in (a, b, e) are fitted across all measurements
from Denmark and Australia (n = 562). Since

Hour of the day

8 12 16 20 24 8 12 16 20 24

Hour of the day

(d)
20

Rp.ro/Rp .10
— [—
o n

o
n

4

the measurements from Denmark were
represented by nine deciduous and one
herbaceous species, the fitting of GAMs to
PFTs was restricted to the measurements in
Australia where four deciduous, four
evergreen and three herbaceous species
were measured. Significant variations in the
diurnal variation of RL,TO/RL,TOr RD,To/RD,To
and the % light inhibition of leaf respiration
are indicated by the solid portions of the
fitted GAMs while dotted portions illustrate
nonsignificant variations. Dark shaded areas
illustrate night-time shared for all days of
measuring and light shaded areas illustrate
the variation in time of sunrise and sunset
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respectively, Table S2). In Denmark, Ry 1,/R1 T, increased sig-
nificantly from sunrise until early midday, stabilized and then
decreased significantly from late midday until sunset (Fig. 1a)
and the total variation in the fitted model was comparable to that
of Ry 1o/ RLTo in Australia (33% change, Table S2). By contrast,
Rp.1o/Rp10o did not exhibit a significant diurnal variation in

Denmark, but remained stable throughout the day with only
minimal total variation in the fitted model (Fig. 1b; Table S2).
All measured species in Australia exhibited significant diurnal
variations in Ry To/RiT, and Rprt./RpT, (Figs S5-S7). In
Denmark, eight out of 10 species exhibited significant diurnal
variations in Ry T,/ Ry 1o, while five exhibited significant diurnal
variations in RD,TO/F,TO (Figs S8-S10).

The PFTs measured in Australia showed similar diurnal varia-
tions in both Ry 1,/RiT, and Rpr1,/Rp10o (Fig. lc,d; Table
S3). For each PFT, RytT,/RiTo and Rpt1o/RpTo Were stable
from sunrise until early or late midday, and decreased signifi-

cantly until late evening or sunset (Fig. 1c,d). The total variation
in the fitted models for Ry 1o/ Ry To and Rp 1o/ Rp 1o Was of sim-
ilar magnitude between the PFTs (Deciduous: 40% and 21%
change, Evergreen: 42% and 23% change, Herbaceous: 49% and

28% change, respectively, Table S2), although the total variation
of Ry 1o/ R1 T, was slightly larger than that of Rp T,/ Rp T, for all
PFTs.

Diurnal variation in the light inhibition of Rp 1o

Across climates, the light inhibition of Rp T, decreased signifi-
cantly from sunrise until morning, stabilized and then increased
significantly from late midday until sunset (Fig. le). The varia-
tion in the inhibition values ranged between —9% and 95% with
a mean inhibition of 32% (Table S4) and the total variation in
the fitted model was 47% (Table S2), emphasizing that R 1,
and Rp T, exhibited different diurnal patterns.

The diurnal variation of the light inhibition of RpT, dif-
fered between the climates (Fig. le; Table S3). For Denmark,
the light inhibition of Ry, decreased significantly from sun-
rise until morning, stabilized and then increased significantly
from late midday untl sunset (Fig. le). For Australia, the
light inhibition of Rp 1, was stable from sunrise until late
midday, and then increased significantly from late midday
until sunset (Fig. le). The total variation in the fitted model
for Denmark was 32% and the mean inhibition was 45%
(Tables S2, S4) while the total variation in the fitted model
for Australia was 63% and the mean inhibition was 18%
(Tables S2, S4, respectively). In addition, the variation in the
inhibition values was larger for Denmark than for Australia
(Fig. 1e; Table S4).

The diurnal variation of the light inhibition of Rp , differed
between the PFTs measured in Australia (Fig. 1f; Table S3). For
each PFT, the light inhibition of Rp T, was stable from sunrise
until late midday or evening, and then increased significantly
until sunset (Fig. 1f). However, the evergreen PFT showed a
more abrupt increase in the evening compared to the other PFTs.
In addition, the total variation in the fitted models was 58%,
70% and 61% for the deciduous, evergreen and herbaceous PFT,
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respectively (Table S2), and the mean and range in inhibition
were similar among the three (Table S4).

Importance of photosynthetic rate and stomatal
conductance

There was a significant positive linear relationship between
RyTo/ Ry To and Agross at the 100 pmol photons m 2 s irradi-
ance level for the measurements collected in Australia (#* = 0.39,
P < 0.05) and for the measurements collected in Denmark (¥ =
0.14, P < 0.05) (Fig. 2a). Agross showed a significant positive lin-
ear relationship with the RpT,/Rp T, measurements from Aus-
tralia (# = 0.24, P < 0.05) while there was no significant
association between Agos and the Rpr1o/Rp 1, measurements
from Denmark (# = 0.006, P > 0.05) (Fig. 2b). Agross showed a
significant positive logarithmic relationship with g, for the mea-
surements collected in Australia (# = 0.71, P < 0.05) and for
the measurements in Denmark (#* = 0.35, P < 0.05) while Low
was in general higher in Denmark (Fig. S11). The light inhibi-
tion of Rp 1, showed a negative linear association with Agoq
in Australia (#* = 0.30, P < 0.05) and in Denmark (Fig. S12a)
(# = 0.04, P < 0.05).

Influence of external environmental factors on the diurnal
patterns of leaf light and dark respiration

There was a significant positive logarithmic relationship between
the ambient light intensity and the Ry 1o/Ri 1o (¥ = 0.49, P <
0.05) and Rp1o/Rp1o (7 = 0.36, P < 0.05) measurements in
Australia, such that when the ambient light intensity exceeded c.
100 pmol photons m™ s~ there was no apparent influence of
the ambient light intensity on the Ry 1o/R1To and Rp 1o/ Rp.To
measurements (Fig. 2¢,d). In a similar manner, the light inhibi-
tion of Rp 1, showed a logarithmic relationship with ambient
light intensity although here the relationship was negative (¥ =
0.21, P < 0.05). In addition, ambient temperature and VPD dis-
played no relationship with the Ry T1o/RiT0o and RpTo/RDTo
measurements (Figs S13a,b, S14a,b).

Error of assuming a constant daytime respiration at
constant temperature for modelling integrated respiratory
carbon flux in leaves

A hypothetical R 1, value of 0.76 pmol CO, m2s! (the
mean R T, of this study) measured at 08:00 h was used to pre-
dict R T, throughout the day at a constant temperature for both
Australia and Denmark (i.e. temporal models), as described in
Eqn 6 (Fig. 3a,d). In addition, models assuming a constant R T,
throughout the day were fitted to the maximum, mean and mini-
mum Ry 1, values predicted by the temporal models (Fig. 3a,d).
For Australia, the predicted daily accumulated CO, efflux using
the temporal, maximum, mean and minimum models was 40,
46, 40 and 25 mmol m™* d™', respectively (Fig. 3b). For Den-
mark, the predicted daily accumulated CO, efflux was 46, 52, 46
and 35 mmol m™* d™', respectively (Fig. 3¢). For Australia, the
percentage difference in accumulated CO, between the

© 2022 The Authors
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Fig. 2 Leaf respiration (a) in the light (R.7o/RL70) and (b) leaf dark respiration (Rp 10/Rp 7o) measurements conducted in Australia (green circles, n = 268)
and Denmark (dark triangles, n = 294) plotted against Agss (pmol CO, m™ s™") at the 100 pmol photons m™2 s~ irradiance level. Leaf respiration (c) in
the light (R 1o/R1,10) and (d) leaf dark respiration (Rp,10/Rp,10) measurements conducted in Australia plotted against the recorded mean ambient light
intensity (umol photons m™ s~") during the time of measuring the light response curves. Linear regression models with 95% pointwise confidence
intervals are fitted to the (a) Ri1o/RLTo (y; = 0.581728 + 0.096533Agr0ss, + €, I = 0.39, P < 0.05 and y; = 0.61213 + 0.07729A 055, + €1, I* = 0.14,

P < 0.05), (b) Rp-10/Rp.10 (y; = 0.796791 + 0.046899%A10s5, + €i, 2 =0.24,P < 0.05 and y; = 0.967332 + 0.006510Ag0ss, + €i, r = 0.006, P > 0.05)
measurements in Australia and Denmark, respectively. Logarithmic regression models with 95% pointwise confidence intervals are fitted to the (c)
RiTo/RiTo (y; = 0.858178 + 0.033641log, (light;) + €;, * = 0.49, P < 0.05) and (d) Rp.70/Rp 10 (y; = 0.924902 + 0.017814log, (light,) + ¢;, * = 0.36,

P < 0.05) measurements in Australia. The studied species are detailed in Supporting Information Table S1.

maximum, mean and minimum models and the temporal model
was 14%, —0.09% and —37%, respectively (Fig. 3c), while for
Denmark, the percentage difference was 12%, —0.1% and —24%,
respectively (Fig. 3f). Hence, the magnitude and direction of the
error resulting from assuming a constant rate of R 1, throughout
a day is highly dependent on the time of measurement.

Daytime respiration at varying and constant temperature

The predicted diurnal variation of R 1, using the temporal
GAMs was compared to the predicted diurnal variation of R
had the leaf temperature varied with a maximum, mean and min-
imum air temperature profile (Fig. 4a,d). For Australia, the pre-
dicted accumulated CO, for the temporal model (at constant
temperature) and the maximum, mean and minimum tempera-
ture profile models was 40, 57, 45 and 41 mmol m™>d™",
respectively (Fig. 4b) while for Denmark, the predicted accumu-
lated CO, was 46, 67, 52 and 47 mmol m™> d™"', respectively
(Fig. 4e). For Australia, the percentage difference in accumulated
CO, between the maximum, mean and minimum temperature

© 2022 The Authors
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profile models and the temporal model was 44%, 13% and 2%,
respectively (Fig. 4c). For Denmark, this difference was 46%,
14% and 2%, respectively (Fig. 4f). Figures for the same analysis
using quadratic linear regression models can be found in

Fig. S15.

Discussion

R and Rp measured with the Kok method varies over the
course of the day at constant measuring temperature

This study shows that leaf daytime respiration exhibits a consis-
tent temporal pattern throughout the day when measured at
constant temperature with the Kok method across 21 different
plant species, two different climates and three different PFTs,
emphasizing the generality of the phenomenon. Leaf daytime
respiration is thus clearly driven by time of day, when estimated
as both R and Rp. Assuming a constant rate of Ry at constant
temperature can result in the over- or underestimation of the

accumulated daily R 1, by 14% and —37% or 12% and —24%
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Fig. 3 Temporal generalized additive models (GAMs) of respiration in the light at constant temperature (R, 1,) for Australia (a) and Denmark (d), where a
hypothetical R, 1, value of 0.76 pmol CO, m~2 s~ (i.e. the mean estimated Ri 1o value across all species in this study) measured at 08:00 h was used to
predict R. 1, values throughout the day at a constant temperature (solid line) with shaded 95% simultaneous confidence bands. The maximum, mean and
minimum models (dashed, dot dashed and dotted lines, respectively) are fitted through the maximum, mean and minimum predicted values of the
temporal GAMs, respectively, and assume a constant rate of R, 1, throughout the day. The predictions were derived by fitting GAMs to the R.10/RL10
measurements from Australia and Denmark. Subsequently, the hypothetical R, 1, value measured at 08:00 h was used to predict R, 1, throughout the day
from the fitted GAM from Australia as: R 7o; = 0.76((0.998728 + f(time;) + €;)/(0.998728 + f(time,) + €)) and from the fitted GAM from Denmark as:
Ri10; = 0.76((1.00074 + f(time;) + €;)/(1.00074 + f(time,) + €x)), where 0.76 is the R|_ 1, value measured at 08:00 h (time,), ¢ is the estimated residual
error at 08:00 h, R 1o, is the predicted rate of respiration at time points time; and ¢; is the residual error at time;. (b, e) Daily accumulated CO, efflux
predicted by the temporal, max, mean and min models for Australia and Denmark, respectively. (c, f) Percentage difference between accumulated CO,

predicted by the maximum, mean and minimum models and the temporal models for Australia and Denmark, respectively.

on a diurnal scale as demonstrated for Australia and Denmark,
respectively (Fig. 3¢,f). This variation in Ry is of similar magni-
tude to that of the variation in R attributed to other studied
factors (e.g. COy: 32% (Ayub er al, 2014), nutrient availability:
29% (Crous er al., 2017a), drought: ¢. 52-60% (Ayub ez al.,
2011; Crous ez al, 2012), canopy height: 52% (Weerasinghe ez
al., 2014), seasonality: 32% (Crous et al., 2017b) and tempera-
ture: —15 to 90% per every 10°C temperature increase (Atkin ez
al., 2005)). Errors rising when comparing rates of respiration
sampled at different times of the day could potentially bias con-
clusions on the influence of such effects. Hence, time of day
should be accounted for when estimating the response of Ry,
and Rp to variation in other factors (e.g. temperature and
species), or when pooling data across studies even when mea-
surements are performed with the same temperature. Effects of
time of day may result in variations of R T, that in turn affect
the calculation of photosynthetic parameters important for

New Phytologist (2022)
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photosynthetic modelling. These could include estimates of
maximum carboxylase (V) rates estimated with the one-
point A, method, which has been shown to be sensitive to the
chosen R (De Kauwe ez al., 2016) and thereby affected by time
of day.

Light inhibition of Rp 1, exhibited significant diurnal
variations

The light inhibition of RpT, exhibited significant diurnal
variations with inhibition values ranging from —9% to 95%
and with a mean of 32%, reflecting that the diurnal pattern
differed between Ry t1,/RiT0o and RpTo/RpTo. This indicates
that R and Rp are regulated by different processes, as sup-
ported by ample biochemical evidence (Hurry ez al, 2005;
Tcherkez et al, 2010, 2012a, 2017b) and by studies showing
that the temperature sensitivity of R may differ from that of

© 2022 The Authors
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Fig. 4 Temporal generalized additive models (GAMs) of respiration in the light at constant temperature (R. 1,) (solid line) and maximum, mean and
minimum temperature variation models of respiration in the light at varying temperature (R 1) (dashed, dot dashed and dotted lines, respectively) with
shaded 95% simultaneous confidence bands for Australia (a) and Denmark (d). For the temporal GAMs, a hypothetical R 1, value of

0.76 pmol CO, m~2 57" (i.e. the mean estimated R, 1, value across all species in this study) measured at 08:00 h was used to predict R, 1, values
throughout the day at a constant temperature. The maximum, mean and minimum temperature variation models are based on three temperature profiles
and predict R, 1. The predictions of R 1 were derived by fitting GAMs to the R 1o/R\ 10 measurements from Australia and Denmark. Subsequently, the
hypothetical R 1, value measured at 08:00 h was used to predict Rt throughout the day at different temperatures from the fitted GAM from Australia as:
Rit; = (0.76((0.998728 + f(time;) + ¢;)/(0.998728 + f(timey) + €)))2"*/1% and from the fitted GAM from Denmark as:

Rit; = (0.76((1.00074 + f(time;) + €)/(1.00074 + f(time,) + ¢)))2"7>/19 where 0.76 is the R, 1, value measured at 08:00 h (time,), e is the
estimated residual error at 08:00 h, R 7; is the predicted rate of respiration at temperatures T; and time point time;, and ¢; is the residual errors at time;. T,
is the temperature at the time where the R 1, value of 0.76 was measured and 2 denotes the factor by which R, 1; changes for every 10°C temperature
change. The temperature profiles were derived from the measured ambient temperature during the time of measuring the light response curves in Australia
and can be viewed in Supporting Information Fig. S2. (b, e) Daily accumulated CO, efflux predicted by the temporal, maximum temperature, mean
temperature and minimum temperature variation models for Australia and Denmark, respectively. (c, f) Percentage difference between accumulated CO,
predicted by the maximum temperature, mean temperature and minimum temperature variation models and the temporal models for Australia and

Denmark, respectively.

Rp (Atkin eral, 2005; Zaragoza-Castells eral, 2007;
McLaughlin e# al., 2014; Kroner & Way, 2016; Crous ez al.,
2017b). The light inhibition of Ry has been shown to vary
between 0 and 100% when estimated with the Kok and Laisk
method (Atkin et al, 2006; Zaragoza-Castells et al, 2007;
Crous et al., 2012; Heskel et al, 2013) and sometimes R
even exceeds Rp (Zaragoza-Castells er al., 2007; Atkin ez al.,
2013; Crous et al, 2017a) as demonstrated in this study as
well for three measurements. Given this variability, approaches
where Ry is calculated from measurements of Rp, by assuming
Ry, constitutes a fixed fraction of Rp (e.g the JULES model),
may be erroneous. The light inhibition of Rp T, showed only
a weak association with the external light intensity above

© 2022 The Authors
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¢. 100 pmol photons m™ s™' in Australia and decreased in a
linear fashion with increasing Agos for both Australia and
Denmark, as shown previously (Atkin er 4/, 2013). However,
the cause of the large difference in variability of the light inhi-
bition of Rp 1, between climates, with much higher inhibition
values in Denmark, is unknown. Eight out of 10 species were
measured in autumn in Denmark where inhibition values have
been shown to increase (Heskel er al, 2014) whereas lower
inhibition values have been reported earlier in the growing
season (Crous et al., 2012; Heskel et al, 2014). Seasonal dif-
ferences in light inhibition may contribute to the observed
variability because the degree of inhibition has been shown to
decrease under environmental conditions that increase the
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demand for energy and C skeletons, such as elevated CO,
(Wang et al, 2001; Shapiro et al, 2004) and increased soil
nutrient availability (Heskel ez al., 2012).

Mechanisms related to the diurnal variation of respiration
in the light at constant measuring temperature

Many processes can affect respiratory CO, effluxes of leaves in
the light (Tcherkez er al, 2017b). These include the oxidative
pentose phosphate pathway (Buckley & Adams, 2011; Shameer
et al., 2019; Xu et al, 2021), photorespiration (Igamberdiev
et al., 2001; Tcherkez et al., 2005, 2008, 2012a), the continued
utilization of stored organic acids (Gauthier ez af, 2010), the
activity of the pyruvate dehydrogenase complex (Budde & Ran-
dall, 1990; Gemel & Randall, 1992), the activity of the malic
enzyme (Gauthier er 4/, 2020) and NAD(P)H : NAD(P) ratios
(Igamberdiev & Gardestrom, 2003). Some CO, fluxes may even
originate from nonleaf sources that are transported through the
vascular tissues to leaves and subsequently released (Stutz ez al,
2017; Stutz & Hanson, 2019). It is therefore paramount to study
how such processes are temporally coregulated and affect CO,
effluxes in the light.

The diurnal variation of Ry 1,/R1 0o and Rp 1o/ Rp To showed
a notable consistency throughout the study period. The wide
range of measurement temperatures between the days of measur-

ing showed no association with Ry 1o/RL 1o and Rp.1o/RD Tos
and the ambient temperature, VPD and external light intensity
above ¢. 100 pmol photons m™2 5" showed only weak associa-
tions with Ry 1,/R1T, and Rp 1o/ Rp To- This does not explicitly
imply that variations in these factors were unimportant, but given
the consistency of the diurnal patterns, it should be considered
whether circadian regulation could play a role. Rp, light-
enhanced dark respiration (LEDR) (Gessler ez al., 2017), g, Ape
(Hennessey et al., 1993; Dodd et al, 2014) and indirectly R
(Doughty ez al., 2006; Resco de Dios et al, 2012) have been
shown to be under circadian control, and further research is
needed to shed light on the importance of circadian regulation in
leaf daytime respiration.

Previous work has shown that photosynthesis regulates Ry
through ATP utilization in sucrose synthesis, redox maintenance
and substrate supply (Krémer ef al, 1988; Raghavendra ez al.,
1994; Kromer, 1995; Hoefnagel et al., 1998), and a coupling of
R to the rate of photosynthesis would explain the association
between Ry T,/RL T, and Agross observed in both Australia and
Denmark. The rate of photosynthesis may additionally have
influenced the regulation of Rpt,/RpTo given the effect of
accumulated net CO, assimilation on Ry due to LEDR
(Azcon-Bieto & Osmond, 1983; Hymus ez al, 2005; Barbour
et al., 2011). The fact that Ry 1o/R1 10 and Rp 1o/ Rp o exhib-
ited different diurnal patterns within climates may be related to
the differential regulation of R and Ry (Hurry et al, 2005;
Tcherkez ez al., 2010, 2017b), and to the participation of pho-
tosynthesis in the regulatory process because the availability of
substrates for R and Rp are influenced by time of day (Pirnik
et al., 2002, 2007; Nogués et al, 2004; Pirnik & Keerberg,
2007; Florez-Sarasa et al, 2012; Griffin & Turnbull, 2012).
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In this study, stomatal conductance showed a strong association
with Agos in Australia. This could indicate an indirect stomatal
regulation of Rpt,/RLTo and Rprt1o/RpT0o because of the
positive linear relationship between Agos and the two. In Den-
mark, stomatal conductance showed a weak association with
Agross compared to Australia, and Ay, only showed a weak
positive linear relationship with Ry 1,/RpT, and none with
RpTo/Rp.To- This suggests that the difference in the diurnal
patterns of Ry 1o/ R To and Rp o/ Rp.T, between Australia and
Denmark were an indirect result of stomatal regulation through
differences in environmental factors between the climates. The
fact that the PFTs measured in Australia exhibited similar diur-
nal patterns in Ry 1o/R1T0o and Rpto/RpTo supports this. In
addition, the fact that different species were measured in Aus-
tralia and Denmark also provides a plausible explanation for
this phenomenon.

In this study, increased G at decreasing irradiance levels was
corrected using Eqn 1, but this approach assumes infinite g,, and
therefore C; = C,, which is known to be unlikely under some
conditions (Harley ez al., 1992; Flexas et al., 2007; Yin & Struik,
2009). In this study, diurnal changes in VPD were presumably
much higher in Australia compared to Denmark, thereby making
it more likely that g,, and g would exhibit asynchronous diurnal
patterns in Australia. As a result, the G = C_ assumption would
be erroneous, which could explain some of the diurnal variation
in R 10/ RL 1o and the light inhibition of Rp 1, observed in Aus-
tralia. It thus seems unlikely that the diurnal variation of
Ry 1o/ RiTo and the light inhibition of Rp 1, is solely a result of

a differendal regulation of g, and g&.

Accounting for effects of time of day when measuring R,
using the Kok method

This study shows that time of day can have considerable effects
on estimates of R conducted in the field with the Kok method.
Comparisons of R between leaves should only be made at the
same time of the day with the recognition that leaves may have
been exposed to different environmental conditions before being
measured. For computing daily averages, measurements should
cover the entire photoperiod for a given leaf to yield precise esti-
mates of daily accumulated CO, effluxes. Measuring throughout
the entire photoperiod is difficult experimentally especially
because measurements need to be at the leaf level, which might
not be possible in all experimental designs. This study offers a
parametric and nonparametric approach whereby an R 1, mea-
surement for a given leaf can be predicted throughout the day at
other temperatures using the supplementary EXCEL spreadsheet
and R script (Dataset S1; Notes S2) based on Eqns 7 and 8,
respectively. The approach can easily be implemented to other
models (e.g. Vomax) by inserting the estimated model coefficients
from Fig. S15 into Eqn 8. The method assumes Ry follows a dis-
tinct relative diurnal pattern (i.e. the predictions may vary in
absolute values but not in per cent) regardless of environmental
factors other than temperature as well as species and PFTs. Pre-
dictions should only be based on R measurements derived with

the Kok method.

© 2022 The Authors
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Conclusion

This study demonstrates that R, Rp and the light inhibition
of Rp exhibit significant diurnal variations when measured
with a constant temperature in the field with the Kok method.
The diurnal pattern of Ry and Rp differed in trajectory and
magnitude between climates but not between PFTs, while it
differed both between climates and in trajectory between PFT's
for the light inhibition of Rp. The results emphasize that time
of day should be accounted for in studies seeking to estimate
the response of leaf daytime respiration to variation in other
factors (e.g. temperature and species), or when deriving infer-
ence across studies. The results highlight the dynamic nature
of leaf daytime respiration that are driven by factors other
than the measuring temperature and that R and Rp exhibit
distinct diurnal patterns. Temporal variation in the regulatory
relationship between physiological mechanisms and leaf respi-
ration needs further attention to unveil the drivers of leaf res-
piration.
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Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Dataset S1 EXCEL spreadsheet containing the data used in this
study including a guide on how to calculate R  throughout the
day by taking into account the temporal variation in R T, using
the supplemented R script.
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Fig. S1 Example of a light response curve of measured and G-
corrected leaf net CO, exchange measurements plotted against
photosynthetically active radiation.

Fig. $2 Mean ambient temperature (°C) during the time of mea-
suring the light response curves in Australia with fitted quadratic
linear regression models depicting the maximum, mean and min-
imum temperature profiles.

Fig. S3 Diurnal variation of leaf respiration in the light (R )
and leaf dark respiration (Rp 1,) from Australia and Denmark.

Fig. S4 Leaf respiration in the light (R 1,/R1 o) and leaf dark
respiration (Rp 1o/ Rp T,) measurements across Australia and Den-
mark plotted against the preset leaf measuring temperature during
the time of measuring the light response curves of each leaf.

Fig. 85 Diurnal variation of leaf respiration in the light,
Ry 1o/ RiTo» and leaf dark respiration, Rp o/ Rp 1o, of Solanum
nigrum, Eucalyptus saligna, Eucalyptus tereticornis and Eucalyptus par-
ramattensis from Australia with fitted generalized additive models.

Fig. 6 Diurnal variation of leaf respiration in the light,
Ry 1o/ R1To» and leaf dark respiration, Rp 1o/ Rp. 1o, of Carya illi-
noinensis, Dichondra repens, Eucalyptus camaldulensis and Araujia
sericifera from Australia with fitted generalized additive models.

Fig. S7 Diurnal variation of leaf respiration in the light,
Ry To/RiTo» and leaf dark respiration, Rp1o/Rp 1o, of Malus
domestica, Liriodendron tulipifera and Platanus acerifolia from
Australia with fitted generalized additive models.

Fig. S8 Diurnal variation of leaf respiration in the light,
R To/RiTo» and leaf dark respiration, Rp,/Rp Te-0f Betula
pendula, Quercus robur, Fraxinus excelsior and Salix cinerea from
Denmark with fitted generalized additive models.

Fig. S9 Diurnal variation of leaf respiration in the light,
Ry To/RiTo> and leaf dark respiration, Rpo/Rp o, Of Alnus
viridis, Alnus glutinosa, Helianthus annus and Corylus avellana
from Denmark with fitted generalized additive models.

Fig. S10 Diurnal variation of leaf respiration in the light,
Ry To/RiTo> and leaf dark respiration, Rpo/Rp 1o, of Cornus
sanguinea and Malus sylvestris from Denmark with fitted general-
ized additive models.

Fig. S11 A, at 100 pmol photons m 2 s™! irradiance con-
ducted in Australia and Denmark plotted against g, at
100 pmol photons m™ s™" irradiance.

Fig. S12 Light inhibition of respiration measurements con-
ducted in Australia and Denmark plotted against Agos at
100 pmol photons m™ s~ irradiance, and against the ambient
light intensity.
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Fig. S13 Leaf respiration in the light (R 1o/ R1 o) and leaf dark
respiration (RpTo/RpTo) measurements conducted in Australia
plotted against the recorded mean ambient temperature (°C)
during the time of measuring the light response curves.

Fig. S14 Leaf respiration in the light (R 1o/ R1 o) and leaf dark
respiration (RpTo/RpTo) measurements conducted in Australia
plotted against the recorded mean ambient vapour pressure
deficit (kPa) during the time of measuring the light response
curves.

Fig. S15 Temporal quadratic linear regression models of respira-
tion in the light at constant temperature (R T,) and maximum,
mean and minimum temperature variation models of respiration
in the light at varying temperature (R 1) for Australia and Den-
mark, respectively.

Notes S1 Supplementary site description: precipitation and tem-
perature data from 2011 to 2021 and during the time of data col-
lection for the region covering the Danish study sites and the
study site in Australia.

Notes S2 R code to calculate temporal patterns of R 1 while
accounting for temporal variations in Ry .
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Table S1 Measured species in Denmark and Australia with indi-
viduals from three different plant functional types (PFTs) (decid-

uous, herbaceous and evergreen).

Table S2 Total diurnal variation (%) of generalized additive
models fitted to Ry 1o/ RLTo> RD,To/ RD To and % light inhibition
of Rp 1, measurements in Fig. 1 that are driven by factors other

than the measured temperature.

Table S3 Model comparison between generalized additive
models fitted across all Ry 1o/RiTo» RpTo/RDTo OF the light
inhibition of Rp T, measurements from Australia and Den-
mark (across climates) with time as the predictor variable
(model 1) and a model where climate (across climates) or
PFT (across PFTs) was added as a covariate (model 2) or
an interaction term (model 3).

Table S4 Mean and variation in the data points of the five light
inhibitions of Rp 1, in Fig. 1(e,f).

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.
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