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As a consequence of global climate change, cold acclimation and deacclimation cycles are becoming 

increasingly frequent during winter in temperate regions. However, little is known about plant 

deacclimation and in particular reacclimation mechanisms, although deacclimation resistance and the 

ability to reacclimate may have wide-ranging consequences regarding plant productivity in a changing 

climate. Here we report time-dependent responses of freezing tolerance, respiration rates, metabolite 

contents (HR-MAS NMR) and fatty acid levels (gas chromatography) in flower buds of two 

ecodormant Ribes nigrum cultivars exposed to three different deacclimation temperatures followed by 

a reacclimation treatment at 4°C. The data reveal that despite differences in the progression of 

deacclimation, the capacity of blackcurrant flower buds to reharden in late winter is virtually non-

existing, implying that increasingly irregular temperature patterns is critical for blackcurrant fruit 

yield. The early phase of deacclimation is associated with a transient increase in respiration and 

decreasing contents of amino acids, tricarboxylic acid (TCA) cycle intermediates and sugars, 

indicating an increased need for carbon sources and respiratory energy production for the activation of 

growth. Decreasing sugar levels may additionally cause loss of freezing tolerance. Deacclimation also 

involves desaturation of membrane lipids, which likely also contributes to decreased freezing 

tolerance but may also reflect biosynthesis of signaling molecules stimulating growth and floral organ 

differentiation. These data provide new insights into the under-researched deacclimation mechanisms 
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and the ability of blackcurrant to reacclimate following different advancements of deacclimation and 

contribute to our understanding of plant responses to increasingly irregular temperature patterns. 
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Introduction 

Plants native to temperate and boreal climates show natural low temperature acclimation during fall in 

preparation for winter frost. This process is termed cold acclimation. Upon exposure to warmer 

temperatures in spring, plants lose the freezing tolerance acquired during acclimation by 

deacclimation, while they resume growth and development (Xin and Browse 2000, Vitasse et al. 

2014). If this transition takes place too late, the plants lose valuable time during the growth season. A 

premature transition on the other hand involves the danger of freezing damage under a late-season 

cold spell, unless the plants have the ability to reacclimate if the temperature drops again (Pagter and 

Williams 2011, Kovi et al. 2016). This situation is strongly influenced by the effects of global climate 

change. Global climate models predict an increase in the mean surface air temperature and in the 

frequency and severity of erratic temperature events (IPCC 2013). Hence, winters in temperate regions 

are becoming progressively milder and temperature patterns are becoming increasingly irregular. This 

will increase the frequency of unseasonable warm spells leading to more frequent acclimation and 

deacclimation cycles (Rapacz et al. 2014). In woody perennials, which undergo seasonal transitions 

between active and dormant states, sudden temperature increases may be particularly decisive in late 

winter and early spring, when plants are particularly vulnerable to cold-injury due to emergence from 

endodormancy (Pagter and Arora 2013).  

While considerable effort has been directed towards understanding how plants cold acclimate and 

adapt to low temperature, deacclimation and in particular reacclimation mechanisms have not attracted 

much attention, although deacclimation resistance and the ability to reacclimate may have wide-

ranging consequences regarding global ecosystems and crop yield in a changing climate (Kreyling 

2010, Smith and Katz 2013). Most extensively documented is the association between changing 

metabolite concentrations, especially compatible solutes, and changes in freezing tolerance (Zuther et 

al. 2015, Andersen et al. 2017, Pagter et al. 2017a). In particular, little is known about the role of 

membrane lipids in deacclimation (Yoshida 1986, Martz et al. 2006), although it has been suggested 

that freezing tolerance is a function of membrane fluidity (Steponkus 1984) and that changes in 

membrane fluidity itself trigger temperature responses in plants (Ruelland and Zachowski 2010). Also, 

an understanding of the importance of membrane lipids in a regain of freezing tolerance during 

reacclimation is completely lacking.  

Blackcurrant (Ribes nigrum L.) is an important soft fruit crop of cold and temperate regions. Floral 

primordia in blackcurrant are initiated in late summer/early autumn and overwinter on dormant stems 

(Tinklin and Schwabe 1970). Flowering will, therefore, only occur the following year if flower 

primordia are present and undamaged. The deacclimation response and the ability to reacclimate is 

likely an important part of the reproductive success of blackcurrant as one of the main limitations to 

the commercial production has been spring frost damage to dehardened flower buds and newly 

developed leaves and flowers (Atkinson et al. 2013). We have previously observed genotypic 

differences in the timing and rate of deacclimation and bud break of blackcurrant (Winde et al. 2017), 
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which may also set the limit for the different genotypes to reacclimate or halt the deacclimation 

process when experiencing a drop in temperature following a warm period. The aim of this study was 

to assess the ability of ecodormant R. nigrum to reacclimate following exposure to a warm period and 

to investigate the deacclimation and reacclimation mechanisms. Specifically, we used two genotypes 

of R. nigrum of contrasting origin to investigate time-dependent responses of freezing tolerance, 

metabolite contents and free fatty acid levels in fully differentiated floral primordia to deacclimation at 

three different temperatures followed by a reacclimation treatment at 4°C. It was hypothesized that (1) 

the capacity of ecodormant plants to reacclimate depends on the progress of deacclimation. (2) The 

timing of metabolic regulation during deacclimation and reacclimation varies between genotypes 

depending on their deacclimation resistance and phenological status and (3) changes in freezing 

tolerance during deacclimation and reacclimation are reflected by changing levels of membrane lipids. 

 

 

Materials and methods 

Plant material and treatments 

Evaluations were carried out using 2-year-old vegetatively propagated Ribes nigrum L. ‘Zusha’ and 

‘Ben Hope’. ‘Zusha’ is a Russian cultivar (Pedersen 2008), while ‘Ben Hope’ is a Scottish cultivar 

from complex crossings involving ‘Westra’ and a backcrossed blackcurrant × gooseberry hybrid 

(238/36 × EM21/15) (Cerekovic et al. 2014). Both ‘Zusha’ and ‘Ben Hope’ are regarded as relatively 

low chill-requiring cultivars (Atkinson et al. 2013, Jones et al. 2013, Andersen et al. 2017), however, 

we have previously observed that ‘Zusha’ is released from dormancy earlier than ‘Ben Hope’ (KH 

Kjær and M Pagter, unpubl. res.), demonstrating a lower chilling requirement of the former cultivar. 

Before start of the experiment, plants were grown outside. Hence, the plants underwent cold hardening 

under natural conditions. Before initiation of the experiment, it was verified that both cultivars had 

emerged from endodormancy. Dormant status (or lack thereof) was estimated by moving potted plants 

into a greenhouse and inducing bud break at 20°C day/night, 18-h photoperiod and 100-300 µmol m−2 

s−1. In both cultivars, the majority of buds started developing within two weeks, implying that 

endodormancy had been broken. At the time of the experiment, the floral primordia of both cultivars 

were fully differentiated with primordia of all flower parts being visible in the primary flower. This 

corresponds to stage 6 of the Sønsteby and Heide (2013) scheme.  

In early February, 11 fully cold-hardened plants of each cultivar were randomly selected to estimate 

maximum freezing tolerance (6 plants) and measure bud respiration and harvest material for 

destructive analysis (5 plants) at start of the experiment (0 days of deacclimation). Another 126 plants 

of each cultivar were randomly divided into three groups and moved into three climate chambers for a 

deacclimation period of 12 days. The deacclimation treatments consisted of an 8.5-h photoperiod 

(corresponding to natural day length) at 150-200 µmol m-2 s-1 combined with three day/night-

temperatures of 16/11, 13/8 or 10/5°C. Measurements of floral bud respiration and harvesting of 
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material for HR-MAS NMR spectroscopy and lipid analysis were carried out after 4, 8 and 12 days of 

deacclimation (DOD). At each time point, samplings and measurements were randomly performed on 

five plants per treatment. Cold hardiness estimations of flower primordia were carried out after 12 

DOD on six plants per treatment.  

To evaluate the reacclimation ability and mechanisms of flower buds, the temperature in the three 

climate chambers were lowered to a constant 4°C, which is usually conducive for cold acclimation 

(Renaut et al. 2006), starting the night between day 12 and day 13. Measurements of bud respiration 

and harvesting of material for destructive analyses were carried out after 4, 8 and 12 days of 

reacclimation (DOR) using five replicates per treatment. Determination of freezing tolerance of flower 

primordia was carried out after 12 DOR using six replicates per treatment. 

 

Freezing tolerance of floral primordia 

Freezing tolerance of floral primordia was determined at eight temperatures; one control (4°C) and 

seven subfreezing temperatures at -10, -15, -20, -25, -30, -40 and -50°C. For each temperature and 

replicate, two stems with one attached axillary bud each were pruned to equal lengths (1-2 cm), 

wrapped in moist paper towels to ensure ice nucleation and inserted into small sealed plastic bags. The 

samples were incubated in a pre-cooled temperature-controlled freezer on top of an aluminum grating 

and cooled at a rate of maximum 5°C per hour to 0°C and subsequently at 2°C per hour until the 

selected temperature was reached. The selected temperature was maintained for 2 h, thereafter the 

samples were withdrawn and thawed overnight on ice at 4°C. Thawed samples were left at 20°C for 

ca. 7 days. Subsequently buds were excised, cut longitudinally and incubated in 0.5% 2,3,5-triphenyl 

tetrazolium chloride (TTC) solution in 0.05 M phosphate buffer at 20°C for 24 h in darkness. 

Following incubation in TTC, the coloration of flower primordia was assessed with a dissecting 

microscope. Active dehydrogenases in mitochondria reduce colorless TTC to red triphenylformazan 

(Steponkus and Lanphear 1967), hence bright red and red floral primordia were assessed as vital, 

while weakly colored, brownish or colorless primordia were regarded as dead.     

 

Respiration and development of floral buds 

Respiration of floral buds was measured in the morning approximately 2 h into the light period. From 

each of five plants the first and second axillary bud from the top of a shoot was distributed to 2.37 ml 

glass vials with 25 mM imidazole buffer (pH 6.5). Extra buffer was added to allow closing the vials, 

with a screw cap containing a silicone inlet, without trapping air bubbles. Vials were immediately 

incubated in darkness in a thermomixer at 16, 13 or 10°C during the deacclimation treatment or 4°C 

before start of the deacclimation treatment and during the reacclimation treatment, corresponding to 

the day temperature in the three deacclimation treatments and the reacclimation treatment. Oxygen 

consumption was measured at 30, 75, 120, 170 and 210 min after incubation with a FireStingO2 

oxygen meter and a needle-mounted optical oxygen micro sensor using the program Oxygen Logger 
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(Pyro Science, Aachen, Germany). Calibration was performed using ambient air (100% oxygen 

saturation) and a saturated 1% (w/v) sodium sulfite solution (0% oxygen saturation). For the 

measurements, the needle with the oxygen sensor was injected into the tube, the oxygen sensor was 

moved out of the needle and relative oxygen saturation was measured during 20 seconds, until a 

steady state value was reached. Plotting the readings against the exact times of the measurements 

approached linear oxygen consumption over time. Oxygen consumption rates with r2 values lower 

than 0.7 and not covered by the confidence interval were omitted from further analysis and in the 

calculation of mean values. Fresh weights (FWs) of the buds were determined before the respiration 

measurements and dry weights (DWs) after drying at 70°C for 24 h. In order to compensate for bud 

swelling during the deacclimation and reacclimation treatments, the FW of the buds were set to equal 

the volume of water being suppressed in the flasks and subtracted from the full volume. The oxygen 

consumption was then calculated as nmol O2 min-1 mg-1 DW.  

Especially plants subjected to the warmest deacclimation treatment started to show signs of bud 

development at the end of the deacclimation treatment. Hence, bud development was recorded after 12 

DOD and 7 and 9 DOR separately for the five top-most lateral buds of a single shoot. Bud burst was 

recorded using a rating of 0 to 4, where 0 = no bud development, 1 = green tip visible, 2 = visible 

leaves on the bud, 3 = grape stage and 4 = one or more flowers open on five plants per cultivar and 

treatment. 

 

HR-MAS NMR of flower primordia 

Metabolic fingerprinting of flower primordia were analyzed using the high-resolution 

magic angle spinning (HR-MAS) technique, which has previously proved valuable in profiling 

metabolites of flower primordia (Pagter et al. 2017b). Just before measuring respiration, two of the 

uppermost positioned axillary buds were harvested from five plants per treatment, immediately frozen 

in liquid nitrogen and stored at -80°C. The buds were later placed on dry ice and dissected free of the 

bud base, adjacent bud scales and leaf primordia to uncover the flower primordia. The flower 

primordia were fitted into disposable 50 µl pre-weighed inserts (Bruker Biospin, Rheinstetten, 

Germany) followed by addition of 10 µl of 0.05% (w/v) D2O containing 0.05% (w/v) 

trimethylasilylpropionic acid, sodium salt (TMSP-d4). The inserts containing TMSP-d4 and plant 

material were weighed again to obtain the exact weight of the primordia before frozen again at -80°C 

until HR-MAS NMR analysis. All HR-MAS NMR measurements were performed at 280 K on a 

Bruker AVANCE 600 NMR spectrometer operating at 14.1 Tesla, observing 1H at 600.13 MHz and 

equipped with a four channel (1H/2H/13C/31P) probe (Bruker BioSpin, Rheinstetten, Germany). Upon 

measurement the insert (sample) was put into a 4 mm zirconium rotor and 1H NMR spectra were 

acquired with a CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence (Bruker cpmgpr1d) including 

presaturation to suppress signals from water molecules and attenuation of broad signals from 

macromolecules. The acquisition parameters for the spectra were as follows: 5 kHz spin rate, 64 scans 
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collected into 32k data points, a spectral width of 12.15 ppm, an acquisition time of 2.25 s, a total 

spin–spin relaxation delay of 100 ms, a spin-echo delay of 1 ms and a recycle time of 3 s. The spectra 

were processed by the application of an exponential multiplication of the FIDs by a factor of 0.3 Hz 

prior to Fourier transformation. Each spectrum was automatically phased, baseline corrected and 

referenced to TMSP-d4 signal at 0.00 ppm as internal reference.  

To aid spectral assignment, a 2D 13C–1H heteronuclear single quantum coherence (HSQC) experiment 

on a selected sample was performed. The HSQC correlating spectrum were acquired with a spectral 

width of 12.15 ppm in the 1H dimension and 180.00 ppm the 13C dimension, a data matrix with a size 

of 2048 × 512 data points, 128 transients per increment and a recycle delay of 3 s.  

Signal assignments was performed according to earlier literature and available databases; the Human 

Metabolome Database (Wishart et al. 2007) and the Biological Magnetic Resonance Databank, 

University of Wisconsin (http://www.bmrb.wisc.edu, Ulrich et al. 2008). The Chenomx NMR Suite 

8.1 (Chenomx, Edmonton, Canada) software was applied to assign and quantify metabolites by 

determining the area of each metabolite and comparing the area with the integral of the TMSP-d4 

signal. Afterwards, the metabolites were normalized to the FW of the primordia in each sample. A first 

step multivariate data analysis was performed on the whole NMR spectra excluding the water signal. 

Misalignments of the spectra were corrected using the icoshift procedure (Savorani et al. 2010). The 

regions 0.2-4.80 ppm and 5.02-10.0 ppm of the 1H NMR spectra were segmented into 0.0132 ppm 

bins and integrated. The binned NMR-data were normalized to total area. Principal Components 

Analysis (PCA) was applied to the binned NMR spectra, which indicated that seven samples were 

outliers. Hence, these replicates were excluded from further analysis. Following HR- MAS NMR the 

flower primordia were lyophilized and their DWs recorded in order to calculate the metabolite 

concentrations on a DW basis. Since dissection of flower primordia is very time consuming and since 

each sample has be loaded manually onto the NMR spectrometer and subsequently manually shimmed 

to ensure homogeneity of the magnetic field, metabolomics of flower primordia was only carried out 

on plants subjected to the warmest (16/11°C) and the coldest (10/5°C) deacclimation treatments. 

 

Determination of free fatty acids in buds 

Simultaneously with the respiration measurements, three to four of the uppermost positioned axillary 

buds from five plants per treatment and cultivar were harvested and their FW determined. Samples 

were frozen in liquid nitrogen and stored at -80°C. For analysis of fatty acids, approximately 15 mg of 

lyophilized sample was extracted by 1 ml heptane containing 0.4 mg ml-1 of C12:1 triglyceride (Nu-

Chek prep, MN, USA) as internal standard and 200 µl of 25% sodium methoxide solution in methanol 

(Sigma Aldrich, Steinheim, Germany) at 50°C  for 10 min. Transesterification of fatty acids to methyl 

esters was carried out adding 1.5 ml of 10% methanolic HCl, heating at 90°C for 30 min, and 

subsequently cooling in an ice bath. Still on ice, samples were mixed with 10 wt% K2CO3 in water, 
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and phase separation was carried out spinning the samples at 500 g for 5 min. Hereafter, the heptane 

layer containing the fatty acid methyl esters was transferred to an empty vial.  

Separation and identification of methyl esters were performed using a HP 6890 gas chromatograph 

(Agilent Technologies, Santa Clara, CA), equipped with a Restek fused silica column (model Rt-2560, 

100 meter, 0.25 mmiD, 0.2 µm df; Restek Corp, PA) coupled with a flame ionization detector. Helium 

was used as a carrier gas at a constant flow of 1 ml min-1, detector and injector temperatures were 

250°C. Oven temperature profile was 140°C for 2 min, increased by 8°C min-1 to 170°C held for 9 

min, increased by 6°C min-1 to 200°C held for 16 min, increased by 6°C min-1 to 240°C and held for 

15 min. Peak identification was performed using an external standard mix of pure methyl esters 

(FAME mix C4-C24, Supelco, Bellefonte, PA). Quantification was performed by normalization of the 

data against the internal standard and comparing peak area of identified fatty acids methyl esters to 

standard curves of the external standard mix. Relative values for the identified fatty acids in % of the 

total content were used to analyze treatment effects on the fatty acid composition of the floral buds. 

The analysis was carried out on five biological replicates per treatment, with two analytical replicates 

for each biological replicate. 

 

Data analysis 

Freezing tolerance expressed as freezing temperature (°C) was estimated as LT50-values, defined as 

the temperature where 50% of the buds contained dead flower primordia. For each sampling date and 

treatment, the LT50 values were determined by fitting a curve to the percentage of surviving flower 

primordia for all six replicates to temperature using a four-parameter sigmoid model in SAS (PROC 

NLIN, SAS Institute, Cary, NC). Differences between LT50 estimates were regarded as significant, if 

the 95% confidence intervals did not overlap. 

The effects of cultivar, deacclimation temperature and treatment duration on bud respiration rates, 

metabolite concentrations and relative fatty acid values were analyzed using a three-way ANOVA in R 

(R Core Team 2015) with correction for multiple testing using the Benjamini-Hochberg method 

(Benjamini and Hochberg 1995). The statistical analysis of metabolite concentrations and relative fatty 

acid values only included data from 4 DOD onwards, as no treatment was employed at 0 DOD. 

However, data collected at 0 DOD are included in Fig. 4 and Figs 6-7 to further illustrate changes 

depending on treatment duration.  

Principal component analysis (PCA) was performed using the FactoMineR package in R (Lê et al. 

2008). Hierarchical clustering of metabolite concentrations normalized against the concentration 

determined in flower primordia of cold acclimated plants (0 DOD) was performed in MultiExperiment 

Viewer (MeV) v. 4.9.0 (Saeed et al. 2003) using a Pearson correlation and average linkage. Spearman 

rank order correlations were carried out in SAS (PROC CORR). 

 

Results 
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Freezing tolerance of flower primordia, bud break and bud respiration  

Flower primordia of ‘Ben Hope’ were considerably more cold hardy than primordia of ‘Zusha’, both 

at initiation of the experiment and after 12 DOD and 12 DOR (Table 1). 12 DOD caused a significant 

decrease in freezing tolerance of both cultivars. In ‘Ben Hope’, deacclimation progressed faster at 

temperatures of 16/11°C compared with 13/8 and 10 /5°C, whereas in ‘Zusha’, floral buds of plants 

exposed to 16/11 and 13/8°C deacclimated faster than buds of plants in the coldest deacclimation 

treatment. None of the plants were able to reacclimate in response to 4°C. Hence, freezing tolerance of 

flower primordia of ‘Ben Hope’ deacclimated at 16/11 and 10/5°C remained stable, whereas at 12 

DOR flower primordia of plants deacclimated at 13/8°C had lost further freezing tolerance. Following 

the reacclimation treatment, flower primordia of ‘Zusha’ were heavily damaged by all freezing test 

temperatures, making it impossible to estimate LT50 for this cultivar and implying further significant 

deacclimation.  

Flower buds of both cultivars started to break during deacclimation (Fig. 1). After 12 DOD 68, 48 and 

8% of the five uppermost buds had reached the ‘green tip’ or ‘visible leaves’ stage in ‘Zusha’ at 16/11, 

13/8 or 10/5°C, respectively. In ‘Ben Hope’ bud development was slower. Hence at 16/11°C 

approximately 32% of the buds showed visible signs of development after 12 DOD, whereas buds of 

plants at 13/8 and 10/5°C did not start to break. The following re-acclimation period at 4°C slowed 

down, but did not halt, bud break of both cultivars. Thus, after 9 DOR at least 80% of the buds of both 

cultivars deacclimated at 16/11°C and ‘Zusha’ deacclimated at 13/8°C showed signs of development. 

Flower buds of ‘Zusha’ deacclimated at 10/5°C also continued to develop during the reacclimation 

period, but did only reach a bud break percentage of 52% at the end of the reacclimation period. Buds 

of ‘Ben Hope’ deacclimated at 13/8 or 10/5°C started to burst during the reacclimation period, but 

slowest in plants deacclimated at 10/5°C. 

The bud respiration rate was not affected by either cultivar or treatment, and therefore data for the two 

cultivars and treatments were pooled (Fig. 2). During 12 DOD the respiration rate decreased from 

approximately 70 nmol O2 g
-1 DW min-1 to less than 40 nmol 02 g

-1 DW min-1, where after a significant 

increase was seen during the reacclimation period.  

 

HR-MAS NMR metabolite profiling of flower primordia 

Principal component analysis (PCA) was used to identify the largest variance components in the 

metabolite data (Fig. 3). Principle component 1 (PC1) explained 54% of the variation and separated 

profiles of flower primordia of the two cultivars in different ways. Generally samples of ‘Ben Hope’ 

clustered rather closely together, however, for plants deacclimated at 10/5°C, PC1 separated samples 

deacclimated for 8 and 12 days from all other samples, while for plants deacclimated at warmer 

temperatures (16/11°C), it separated samples deacclimated for 4 or 8 days from all other samples. For 

‘Zusha’, PC1 separated the profiles taken after cold acclimation and different durations of 

deacclimation and reacclimation. Especially for ‘Zusha’ deacclimated at 16/11°C did the distribution 
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of profiles follow an order from cold acclimated to 4 and 8 DOD, 12 DOD, 4 and 8 DOR and 12 DOR. 

In ‘Zusha’ deacclimated at 10/5°C, the samples followed an order from 4 DOD, 8 DOD, CA, 12 DOD, 

12 DOR and 4 and 8 DOR, indicating that samples of plants reacclimated for 12 days at 10/5°C 

metabolically were approaching deacclimating samples. PC2 explained 11% of the variation and 

tended to separate profiles of flower primordia according to deacclimation temperature. According to 

the variables factor map (Fig. S1) most metabolites were highly correlated to the first dimension, 

while in the second dimension samples were mostly separated due to their content of fumarate and to a 

lesser extent choline.    

Of the 22 metabolites identified from the HR-MAS NMR spectra, citrulline was the only metabolite 

whose concentration did not change significantly depending on cultivar, deacclimation temperature, 

treatment duration or an interaction as revealed by three-ANOVA (Table S1). Except for sucrose, the 

concentration of all significantly regulated metabolites changed according to treatment duration, while 

13 metabolites were significantly affected by cultivar or an interaction between cultivar and 

deacclimation temperature. The concentrations of asparagine, choline, fumarate and succinic acid 

varied significantly with deacclimation temperature. Clustering of the metabolites normalized against 

the concentration determined in flower primordia of cold acclimated plants (0 DOD) revealed four 

major patterns of metabolic responses (Fig. 4): (a) Myo-inositol, TCA cycle intermediates (citric acid, 

succinic acid and malic acid) and most amino acids (glutamate, valine, glutamine, asparagine, lysine 

and isoleucine) remained stable during early deacclimation but increased during late deacclimation or 

reacclimation in ‘Zusha’. For most of the metabolites, the concentration increase appeared earlier at 

16/11°C than at 10/5°C. In ‘Ben Hope’, the tendency was the same, but in this cultivar the metabolites 

in cluster (a) initially decreased and concentration increases appeared later and/or were smaller than in 

‘Zusha’, especially in primordia of plants deacclimated at 10/5°C. The concentrations of metabolites 

in cluster (b) also increased during late deacclimation and/or reacclimation, but in this cluster cultivar 

differences were smaller. Hence, only the concentration of one out of the four metabolites varied 

significantly between cultivars. This cluster contained quinic acid, proline, alanine and maltose. The 

concentrations of fumarate and choline in cluster (c) increased strongly during deacclimation and/or 

reacclimation. The increase appeared earlier in ‘Zusha’ than in ‘Ben Hope’ and earlier at warmer than 

at cooler deacclimation temperatures. Accordingly, the concentrations of these two metabolites were 

significantly affected by an interaction between cultivar, deacclimation temperature and treatment 

duration. Concentrations of glucose and fructose in cluster (d) initially decreased during 

deacclimation, whereafter they increased, with the increase being more pronounced in ‘Zusha’ than in 

‘Ben Hope’. In addition, three small clusters were identified, containing one or two metabolites, 

including O-phosphocholine, sucrose, citrulline and arginine. The concentration of these four 

metabolites varied only little during the experiment.  

 

Fatty acids in buds 
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Of the 37 fatty acid methyl esters (FAMEs) in the standard mix, eight FAMEs were identified in the 

blackcurrant buds. These were assigned to c16 (palmitic acid), c18:1 n9 (oleic acid), c18:2 n6 (linoleic 

acid), c20 (arachidic acid), c18:3 n6 (ɣ-linolenic acid), c18:3 n3 (α-linolenic acid), c20:2 (eicosadionic 

acid) and c22 (behenic acid). According to the PCA on the relative fatty acid values (Fig. 5) it was 

possible to distinguish the effects of treatment duration and deacclimation temperature for both 

cultivars as seen also for the HR-MAS profiles. PC1 explained 52% of the variance and separated 

profiles of cold acclimated and deacclimating buds from reacclimating buds. This was most clear for 

samples of ‘Zusha’, which were separated further apart depending on treatment duration than samples 

of ‘Ben Hope’. PC2 explained 19% of the variation and tended to separate samples of ‘Zusha’ 

deacclimated for 12 d at the two warmest deacclimation temperatures (16/11 and 13/9°C) and samples 

of ‘Ben Hope’ deacclimated for 12 days at the warmest deacclimation temperature (16/11°C) from all 

other samples. According to the variables factor map (Fig. S2) cold acclimated and deacclimating buds 

were separated from reacclimating buds due to higher relative values of linoleic, arachidic, ɣ-linolenic 

and eicosadionic acids in cold acclimated and deacclimating buds and higher relative values of oleic 

and α-linolenic acids in reacclimating buds. In the second dimension, samples were mostly separated 

according to their relative values of palmitic acid.  

The ratio of unsaturated to saturated fatty acids did not differ significantly with treatment duration, 

cultivar or deacclimation temperature, but the relative values of the individual fatty acids varied 

significantly depending on cultivar, deacclimation temperature, treatment duration or an interaction 

between two or all three factors (Table S2). All eight fatty acids varied between cultivars and with 

deacclimation temperature or an interaction between cultivar and deacclimation temperature. Except 

for palmitic acid, the relative values of all fatty acids also changed depending on treatment duration 

(Figs. 6-7). The relative content of oleic acid increased dramatically during reacclimation especially in 

‘Zusha’ deacclimated at the warmest temperatures. Accordingly oleic acid was significantly affected 

by an interaction between all three factors. The relative contents of eicosadionic acid, ɣ-linolenic acid, 

behenic acid and arachidic acid decreased during late deacclimation (8 DOD-12 DOD) or during 

reacclimation. This accumulation pattern was most clear for ‘Zusha’ deacclimated at 16/11°C, whereas 

for other treatments and especially in ‘Ben Hope’ the pattern was less clear. The relative contents of α-

linolenic acid and linoleic acid varied little in ‘Ben Hope’ during the experiment, while in ‘Zusha’ α-

linolenic acid increased and linoleic acid decreased slightly during reacclimation.  

A global correlation analysis among the eight fatty acids in flower buds indicated that levels of most 

fatty acids were regulated in a similar fashion in ‘Zusha’ during deacclimation and the reacclimation 

treatment. For an easier overview, Fig. 8 only shows the color-coded P-value ranges of these 

correlations. The numerical P-values can be found in Table S3. There were some exceptions though. 

Hence, the relative values of palmitic acid and behenic acid did not correlate with any other fatty 

acids. In ‘Ben Hope’, most correlations between fatty acids levels were reduced or absent. However, 

the persisting correlations were generally in the same direction as observed in ‘Zusha’.  
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Discussion 

Both cultivars displayed a significant drop in freezing tolerance of flower primordia after 12 DOD, but 

the deacclimation response varied with cultivar and deacclimation temperature. When exposed to the 

coldest deacclimation treatment (10/5°C), ‘Ben Hope’ had lost 36% of its freezing tolerance after 12 

DOD (as percentage of LT50 of CA plants), whereas ‘Zusha’ had lost only 18% of its freezing 

tolerance. A more rapid loss of freezing tolerance in more tolerant genotypes has been reported before 

for other plants species (Pagter et al. 2011a,b, Zuther et al. 2015). In both genotypes, deacclimation 

progressed faster with increasing deacclimation temperature. However, after 12 DOD at 16/11°C and 

13/8°C the more sensitive genotype ‘Zusha’ had lost 61 and 52% of its freezing tolerance, whereas the 

corresponding percentages for ‘Ben Hope’ were 48 and 26%. Differential loses of cold hardiness in 

response to different deacclimation temperatures indicates that the effect of temperature on the 

deacclimation response differs with genotype. Hence, at lower temperatures ‘Zusha’ may be more 

deacclimation resistant than ‘Ben Hope’ and vice versa at higher temperatures.   

A strong potential for deacclimation was associated with bud break in both cultivars as evidenced by 

bud break percentages between 32-68% after 12 DOD at 16/11°C in both cultivars and at 13/8°C in 

‘Zusha’. In contrast, no or only few buds started to break in the other treatments, which were less 

effective in terms of decreasing freezing tolerance. This highlights the dual effect of temperature on 

deacclimation and ontogenetic development towards bud burst in plants released from endodormancy. 

In accordance with observations across four temperate deciduous tree species (Vitra et al. 2017), bud 

break was earliest in ‘Zusha’, which generally showed the highest dehardening potential. ‘Zusha’ is 

also known to be an early flushing genotype under natural conditions (Andersen et al. 2017, Winde et 

al. 2017).  

The rehardening potential of both cultivars after 12 DOD at various temperatures was nil, as all plants, 

except for ‘Ben Hope’ exposed to the lowest deacclimation temperatures (10/5°C), lost further 

freezing tolerance during the reacclimation treatment. Hence, the reacclimation treatment did not 

reverse but only delayed deacclimation at best. It is very likely that the ability of blackcurrant to 

reharden decreases with the progression of winter as observed in other plants species (Pagter and 

Williams 2011, Vitra et al. 2017), and that the reacclimation capacity would have been greater during 

the endodormancy phase. However, the fact that none of the plants were able to increase their freezing 

tolerance following 12 DOD emphasizes the vulnerability of temperate woody perennials to irregular 

temperature patterns and late spring frost during ecodormancy and supports the proposition that spring 

temperatures are decisive in shaping cold range limits of temperate woody perennials (Vitra et al. 

2017). It is additionally in line with the suggestion, that dehardening becomes irreversible and tissues 

lose their capacity to reharden after development and elongation growth has been initiated in the 

spring (Rapacz 2002, Jouve et al. 2007, Vitasse et al. 2014). Interestingly, bud development continued 

during the reacclimation treatment. Although an increasing length of natural chilling has been shown 
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to increase the ability for budburst at low temperatures (Junttila and Hänninen 2012), it is surprising 

that low, non-freezing temperature that are usually conducive for cold acclimation (i.e. 4°C) did not 

halt bud flushing. This may suggest that at non-freezing temperatures not only dehardening but also 

bud flushing is irreversible, when tissues have started to become active. 

Since the reacclimation treatment did not reverse but only delayed deacclimation, the observed 

metabolite and fatty acid patterns and changes likely reflects metabolic regulation during 

deacclimation and bud opening rather than metabolic regulation during deacclimation and 

reacclimation. In accordance with our second hypothesis, both genotypic and treatment differences in 

loss of freezing tolerance and bud burst were visible at the metabolic level. Thus, dynamic changes in 

primary metabolism were in most cases greater and occurred earlier in ‘Zusha’ than in ‘Ben Hope’, 

consistent with earlier bud break and relatively greater losses of freezing tolerance of the former than 

the latter cultivar. Similarly, in both genotypes plants exposed to the warmest deacclimation treatment 

(16/11°C) generally showed an earlier onset of increases or decreases in significantly regulated 

metabolites and fatty acids than plants exposed to the lower deacclimation temperatures (13/8°C 

and/or 10/5°C).  

In ‘Ben Hope’, most of the identified TCA cycle intermediates (citric, succinic and malic acids) 

decreased during 4-12 DOD, where after their concentrations increased. This suggests that the TCA 

cycle is either depleting substrates rapidly or that relatively less substrate (e.g. pyruvate) is being fed 

into the TCA cycle, when plants are shifted to deacclimating conditions. Accordingly, the bud 

respiration rate of both cultivars increased transiently, although non-significantly, during early 

deacclimation. In Arabidopsis, depletion of both TCA cycle and glycolytic intermediates during the 

first 24 h of deacclimation has also been proposed to be due to increased respiratory energy production 

associated with growth resumption (Pagter et al. 2017a). In ‘Zusha’, a similar concentration decrease 

in TCA cycle intermediates during deacclimation was not visible. It is possible that an increase in 

respiratory activity occurred before 4 DOD in this cultivar, which were more responsive to 

deacclimating conditions than ‘Ben Hope’, and therefore was not captured on a time scale of several 

days. After 12 DOD the flower bud respiration rate had decreased coinciding with increasing 

concentrations of most TCA cycle intermediates. Hence, after some days of deacclimation the need for 

respiratory energy production may decrease leading to less rapid substrate depletion. Increased 

respiratory energy production was likely fuelled by hexose sugars accumulated in cold acclimated 

flower primordia, as the concentrations of fructose, glucose and maltose decreased during early 

deacclimation in both cultivars. A general decrease in sugar content during deacclimation has also 

been found in other plants species (Pagter et al. 2011b, Shin et al. 2015, Zuther et al. 2015), and may 

be functionally related to a loss of freezing tolerance (Pagter and Arora 2013). In addition to using 

accumulated hexoses, the meristematic cells of the flower primordia may take up free hexoses 

exported from vegetative bud structures or other organs to satisfy the energy requirements of the 

flower primordia. Hence, under field conditions upregulation of a hexose transporter homologue in 
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flushing buds of blackcurrant was proposed to be associated with increased uptake of hexoses to 

satisfy the energy requirements of the flower bud meristems (Andersen et al. 2017). Since the sucrose 

concentration did not change with treatment duration, sucrose catabolism is likely not a source of 

energy and carbon skeletons in developing flower primordia.  

Both the concentrations of TCA cycle intermediates and the bud respiration rate increased during the 

reacclimation treatment. Increased amounts of TCA cycle intermediates have both been associated 

with exposure to cold acclimating conditions (Kaplan et al. 2004, Korn et al. 2010) and bud 

development (Andersen et al. 2017, Dhuli et al. 2014) and it is therefore difficult to determine the 

reason for the increasing levels of TCA intermediates as found in this study. If the increasing 

respiratory rate during the reacclimation treatment was indeed a low temperature response it may be a 

result of metabolic cold acclimation responses, although they did not result in increased freezing 

tolerance. Hence, Sperling et al. (2015) recently showed that numerous tree species respond to cooling 

at near-freezing temperatures by significantly increasing stem respiration rates.  

Increasing levels of most amino acids during late deacclimation and/or the reacclimation treatment 

may be the result of degradation of storage proteins as observed in cambial meristems of Populus 

tremula during reactivation in spring (Druart et al. 2007). The amino acids may be imported from 

other organs to supply building blocks for the synthesis of new proteins as meristems become active 

(Cooke and Weih 2005). Increasing levels of several amino acids has previously been observed in 

developing flower buds of blackcurrant grown under natural conditions  (Andersen et al. 2017). 

Interestingly, more of the amino acids increasing in flower primordia have been associated with flower 

development. Hence, in Lotus japonica, plants with metabolic lesions reducing the glutamate content 

in flowers were sterile, suggesting that high concentrations of glutamate and of amino acids derived 

from it, such as proline, may be required for adequate development of floral tissue (Suárez et al. 

2003). Correspondingly, many plants accumulate large amounts of proline during the transition to 

flower initiation (Kavi Kishor et al. 2015). Branched-chain amino acids have been implicated in shoot 

organogenesis in white spruce (Dowlatabadi et al. 2009). Thus, accumulation of valine in flower 

primordia of developing buds may also be associated with the development of flowers.  

Fatty acid desaturation and changes in lipid composition are broadly linked to acclimation to both 

chilling and freezing temperatures (Angelcheva et al. 2014), and although little is known about lipid 

changes during deacclimation, the few existing studies indicate that membrane lipid changes during 

deacclimation are largely a reversal of those observed during cold acclimation (Yoshida 1986, Iivonen 

et al. 2004). Hence, it might be expected that long-chain polyunsaturated fatty acids would disperse 

during deacclimation. In keeping with this expectation, the levels of ɣ-linolenic (c18:3 n6), linoleic 

(c18:2) and eicosadionic (c20:2) acids decreased and the level of oleic acid (c18:1) increased during 

late deacclimation and the reacclimation treatment, when flower primordia lost further freezing 

tolerance, indicating that lipid saturation is reversed during loss of freezing tolerance. Coordination 

between these fatty acids during loss of freezing tolerance was further supported by the strong 
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correlations between their relative levels in ‘Zusha’ and to a lesser extent in ‘Ben Hope’. The strong 

negative correlation between ɣ-linolenic (c18:3) and α-linolenic (c18:3) acids in ‘Zusha’ and a 

negative, but non-significant correlation (P = 0.10) in ‘Ben Hope’ suggests that these isomers are 

functionally different in blackcurrant. The contents of α- and ɣ-linolenic acids have previously been 

shown to correlate negatively in the wild species Ribes spicatum (Johansson et al. 2000). In addition to 

their key roles in signal perception and transmission, plant plasma membranes are themselves an 

important source of signaling molecules, many of which are derived from fatty acids. The substrate of 

jasmonate (JA) biosynthesis is α-linolenic acid (Wasternack and Hause 2013, Li et al. 2016). Free α-

linolenic acid (18:3) is oxygenated by lipoxygenase enzymes (LOX) and then converted to 12-oxo-

phytodienoic acid (OPDA) through the combined action of allene oxide synthase (AOS) and allene 

oxide cyclase (AOC). OPDA is reduced by OPDA REDUCTASE3 (OPR3) and converted to JA by 

three cycles of β-oxidation (Wasternack and Hause 2013). In Arabidopsis, both  LOX1, AOC and 

OPR3 were significantly up-regulated when cold acclimated plants were transferred to warm 

conditions (Pagter et al. 2017a), indicating that deacclimation is associated with increased endogenous 

JA levels. Hence, accumulation of α-linolenic acid in blackcurrant flower buds may be associated with 

increased JA synthesis during deacclimation. JA is known to regulate a wide spectrum of plant 

processes, such as growth and development, as well as stress defense. Recently, very-long-chain fatty 

acids (> 18 carbons) have also been proposed to play a signaling role in floral organ differentiation. 

Thus, in Arabidopsis the two transcription factors CRC and AP1, which are key regulators of floral 

organ differentiation, are positive regulators of a number of fatty acids, including arachidic acid (c20) 

(Han et al. 2012). Decreasing levels of saturated arachidic acid (c20) in deacclimating blackcurrant 

flower buds may therefore not be entirely related to a change in membrane fluidity. Palmitic acid 

(c16), which quantitatively was one of the most important fatty acids, does not seem to play an 

important role in transitions in freezing tolerance in floral buds of blackcurrant, as it did not change 

with treatment duration although it increased with increasing deacclimation temperature. Similarly the 

relative amount of palmitic acid in needles of Picea obovate changed little during cold acclimation 

(Angelcheva et al. 2014).  

In conclusion, our results document that despite differences in the progression of deacclimation, the 

capacity of ecodormant blackcurrant flower buds to reharden in late winter is non-existing or very low, 

indicating that increasingly irregular temperature patterns during late winter and spring is critical for 

blackcurrant fruit yield. Deacclimating conditions both promote loss of freezing tolerance and bud 

break of blackcurrant. Growth resumption and development of flower primordia is associated with a 

transient increase in respiration and is likely fuelled by catabolism and interconversion of sugars and 

proteins accumulated during cold acclimation. Decreasing levels of sugars and desaturation of 

membrane lipids, which likely decreases membrane fluidity, may cause loss of freezing tolerance. 

However, changes in membrane fatty acids may also reflect biosynthesis of signalling molecules 

stimulating growth and floral organ differentiation.  
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Supporting information 

Additional supporting information may be found in the online version of this article: 

Fig. S1. Variables factor map of the PCA  based on 22 metabolites in flower primordia.   

Fig. S2. Variables factor map of the PCA  based on 8 lipids in flower buds. 

Table S1. Outcome of the analysis of metabolite concentrations identified from the HR-MAS NMR 

spectra using a three-way ANOVA.  

Table S2. Outcome of the analysis of relative fatty acid values using a three-way ANOVA.  

Table S3. Spearman correlation matrix with the P-values for all pairwise correlations between relative 

fatty acid levels in flower buds. 
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Figure legends 

Fig. 1. Percentage bud break measured for the five uppermost positioned lateral buds of 10 replicate 

plants of Ribes nigrum ‘Ben Hope’ (circles) and ‘Zusha’ (triangles). Cold acclimated plants were 

deacclimated for 12 days at 10/5C (black), 13/8°C (grey) or 16/11C day/night (white) and then 

reacclimated for 12 days at 4C. Bud stages were arranged in two classes, where 0 = no bud 

development and 1 = visible signs of bud break (green tip or one or more leaves unfolded) 

respectively. 

 

Fig. 2. Dark respiration rates of detached buds from Ribes nigrum ‘Ben Hope’ and ‘Zusha’. Cold 

acclimated plants were deacclimated for 12 days at 10/5, 13/8 or 16/11C day/night and then 

reacclimated for 12 days at 4C. The values are means of 24 measurements ± SE. Different letters 

indicate significant differences (P ≤ 0.05) between treatment durations.   

 

Fig. 3. Score plot from principal component analysis (PCA) applied to a NMR metabolite dataset from 

flower meristems of Ribes nigrum ‘Zusha’ (closed symbols) and ‘Ben Hope’ (symbols with a cross). 

Cold acclimated plants (CA) were deacclimated for 12 days at 10/5C day/night (circles) or 16/11C 

day/night (squares) and then reacclimated for 12 days at constant 4°C (n = 4-6). Colours illustrate cold 

acclimated samples and the different sampling days from 4-12 days of deacclimation (DOD) and 4-12 

days of reacclimation (DOR).  

 

Fig. 4.  Overview of the dynamic changes in primary metabolism in flower primordia of Ribes nigrum 

‘Zusha’ (Z) and ‘Ben Hope’ (BH). Cold acclimated plants (CA) were deacclimated at 10/5°C (10) or 

16/11°C (16) for 4, 8 or 12 days (DOD) and then reacclimated at 4°C for 4, 8 or 12 days (DOR, n = 4-

6). Metabolite concentrations normalized against the concentration determined in flower primordia of 

cold acclimated plants were clustered using Pearson correlation and average linkage. The panel shows 

normalized metabolite intensities as indicated by the different colors.  

 

Fig. 5. Score plot from principal component analysis (PCA) of relative fatty acid values in flower buds 

of Ribes nigrum ‘Zusha’ (closed symbols) and ‘Ben Hope’ (symbols with a cross). Cold acclimated 

plants (CA) were deacclimated for 4, 8 or 12 days at 10/5°C day/night  (circles), 13/8°C (triangles) or 

16/11°C day/night (squares) followed by 4, 8 or 12 days of reacclimation at 4°C (n = 3-6). Colours 

illustrate cold acclimated samples and the different sampling days from 4-12 days of deacclimation 

(DOD) and 4-12 days of reacclimation (DOR).  

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Fig. 6. Overview of the dynamic changes in palmitic, oleic, linoleic and arachidic acids in flower buds 

of Ribes nigrum ‘Ben Hope’ (left) and ‘Zusha’ (right). Cold acclimated plants (CA) were deacclimated 

for 4, 8 or 12 days at 10/5, 13/8 or 16/11°C day/night and then reacclimated at 4°C for 4, 8 or 12 days 

(n = 3-6).  

 

Fig. 7. Overview of the dynamic changes in ɣ-linolenic, α-linolenic, eicosadionic and behenic acids in 

flower buds of Ribes nigrum ‘Ben Hope’ (left) and ‘Zusha’ (right). Cold acclimated plants (CA) were 

deacclimated for 4, 8 or 12 days at 10/5, 13/8 or 16/11°C day/night and then reacclimated at 4°C for 4, 

8 or 12 days (n = 3-6).  

 

Fig. 8. Correlation coefficients between relative fatty acid levels in Ribes nigrum ‘Ben Hope’ (top 

panel) and ‘Zusha’ (lower panel). Cold acclimated plants were deacclimated for 4, 8 or 12 days at 

10/5, 13/8 or 16/11°C day/night and then reacclimated at constant 4°C for 4, 8 or 12 days. P ≤ 0.05 

(yellow), P ≤ 0.01 (orange), P ≤ 0.001 (red). The numerical P-values can be found in Table S3.  
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Table 1. Freezing tolerance expressed as freezing temperature (°C) was estimated as the temperature 

where 50% of the buds contained dead flower primordia (LT50) of buds of Ribes nigrum ‘Ben Hope’ 

and ‘Zusha’ subjected to 12 days of deacclimation (DOD) at either 16/11, 13/8 or 10/5°C day/night 

followed by 12 days of reacclimation (DOR) at constant 4°C. LT50 values [mean ± SE (°C)] are shown 

for six plants tested at eight temperatures. Within cultivars different letters indicate significant 

differences between LT50 values. Differences between LT50 values were regarded as significant, if the 

95% confidence intervals did not overlap. 

 

Cultivar 0 DOD Deacclimation 

temperature 

12 DOD 12 DOR 

   LT50 (°C) ± SE 

  

-39.1 ± 2.6e 

16/11°C -20.5 ± 0.7b -19.2 ± 1.0ab 

‘Ben Hope’ 13/8°C -28.9 ± 4.4d -19.8 ± 0.0a 

 10/5°C -25.0 ± 2.2cd -22.1 ± 0.7bc 

  

-24.1 ± 0.6c 

16/11°C -9.5 ± 2.2a < -10 

‘Zusha’ 13/8°C -11.6 ± 1.9a < -10 

 10/5°C -19.8 ± 0.1b < -10 
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 Palmitic 

acid 
Oleic acid Linoleic 

acid 
Arachidic 

acid 
ɣ-linoleic 

acid 
α-linoleic 

acid 
Eicosadionic 

acid 
Behenic 

acid 

Palmitic acid  0.65  -0.58 -0.83  -0.81  

Oleic acid     -0.59  -0.72  

Linoleic acid  -0.62    -0.73   

Arachidic acid   -0.70 0.75  0.76  0.76  

ɣ-linoleic acid  -0.87 0.78 0.87   0.93  

α-linoleic acid  0.74 -0.95 -0.85 -0.92    

Eicosadionic acid  -0.88 0.62 0.85 0.92 -0.78   

Behenic acid         
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