394 research outputs found

    hydrogen embrittlement in pipelines transporting sour hydrocarbons

    Get PDF
    Abstract Lamination-like defects in pipeline steels can be of both metallurgical and operational origin. In pipelines transporting hydrocarbon usually such defects are not a big challenge since they do not propagate under operating conditions. Nonetheless, in presence of a corrosion phenomenon and sour gas (H2S), it is possible to observe blisters and cracks which may propagate in the steel. The observed damage mechanisms is Hydrogen Embrittlement and in spite of a huge amount of study and publications available, it is quite difficult for a pipeline owner to get practical data (crack propagation rate for instance) allowing a reliable estimate of the fitness for service of a pipeline. Taking advantage of a pipeline spool containing internal defects that was in service for more than 10 years and recently removed, a comprehensive study is underway to obtain a complete assessment of the pipeline future integrity. The program is comprehensive of study and comparison of ILI reports of the pipeline, to determine the optimum interval between inspections, assessment of inspection results via an accurate nondestructive (UT) and destructive examination of the removed section, to verify ILI results, lab tests program on specimens from the removed spool at operating conditions (75-80 bar and 30°-36° C) in presence of a small quantity of water, H2S (5%) and CO2 (7%), in order to assess defect propagation and to obtain an estimate of crack growth rate, and test in field of available methods to monitor the presence of Hydrogen and/or the growth of defects in in-service pipelines. This quite ambitious program is also expected to be able of offering a small contribution toward a better understanding of HE mechanisms and the engineering application of such complex, often mainly academic, studies

    Physalis pruinosa var. argentina J.M. Toledo & Barboza

    Get PDF
    Ruta nacional nº 79: Entre su empalme con Ruta nacional nº 38 y Salina La AntiguapublishedVersio

    Prove comparative fra due trinciasarmenti

    Get PDF

    Un trinciasarmenti innovativo a doppio rotore

    Get PDF

    Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning

    Get PDF
    A novel (scalable) electrospinning process was developed to fabricate bio-inspired multiscale three-dimensional scaffolds endowed with a controlled multimodal distribution of fiber diameters and geared towards soft tissue engineering. The resulting materials finely mingle nano- and microscale fibers together, rather than simply juxtaposing them, as is commonly found in the literature. A detailed proof of concept study was conducted on a simpler bimodal poly(ε-caprolactone) (PCL) scaffold with modes of fiber distribution at 600 nm and 3.3 μm. Three conventional unimodal scaffolds with mean diameters of 300 nm and 2.6 and 5.2 μm, respectively, were used as controls to evaluate the new materials. Characterization of the microstructure (i.e. porosity, fiber distribution and pore structure) and mechanical properties (i.e. stiffness, strength and failure mode) indicated that the multimodal scaffold had superior mechanical properties (Young's modulus ∼40 MPa and strength ∼1 MPa) in comparison with the controls, despite the large porosity (∼90% on average). A biological assessment was conducted with bone marrow stromal cell type (mesenchymal stem cells, mTERT-MSCs). While the new material compared favorably with the controls with respect to cell viability (on the outer surface), it outperformed them in terms of cell colonization within the scaffold. The latter result, which could neither be practically achieved in the controls nor expected based on current models of pore size distribution, demonstrated the greater openness of the pore structure of the bimodal material, which remarkably did not come at the expense of its mechanical properties. Furthermore, nanofibers were seen to form a nanoweb bridging across neighboring microfibers, which boosted cell motility and survival. Lastly, standard adipogenic and osteogenic differentiation tests served to demonstrate that the new scaffold did not hinder the multilineage potential of stem cells. © 2009 Acta Materialia Inc

    Interfacing Sca-1pos Mesenchymal Stem Cells with Biocompatible Scaffolds with Different Chemical Composition and Geometry

    Get PDF
    An immortalized murine mesenchymal stem cell line (mTERT-MSC) enriched for Linneg/Sca-1pos fraction has been obtained through the transfection of MSC with murine TERT and single-cell isolation. Such cell line maintained the typical MSC self-renewal capacity and continuously expressed MSC phenotype. Moreover, mTERT-MSC retained the functional features of freshly isolated MSC in culture without evidence of senescence or spontaneous differentiation events. Thus, mTERT-MSC have been cultured onto PLA films, 30 and 100 μm PLA microbeads, and onto unpressed and pressed HYAFF-11 scaffolds. While the cells adhered preserving their morphology on PLA films, clusters of mTERT-MSC were detected on PLA beads and unpressed fibrous scaffolds. Finally, mTERT-MSC were not able to colonize the inner layers of pressed HYAFF-11. Nevertheless, such cell line displayed the ability to preserve Sca-1 expression and to retain multilineage potential when appropriately stimulated on all the scaffolds tested

    Energy-efficient adaptive machine learning on IoT end-nodes with class-dependent confidence

    Get PDF
    Energy-efficient machine learning models that can run directly on edge devices are of great interest in IoT applications, as they can reduce network pressure and response latency, and improve privacy. An effective way to obtain energy-efficiency with small accuracy drops is to sequentially execute a set of increasingly complex models, early-stopping the procedure for 'easy' inputs that can be confidently classified by the smallest models. As a stopping criterion, current methods employ a single threshold on the output probabilities produced by each model. In this work, we show that such a criterion is sub-optimal for datasets that include classes of different complexity, and we demonstrate a more general approach based on per-classes thresholds. With experiments on a low-power end-node, we show that our method can significantly reduce the energy consumption compared to the single-threshold approach

    The Immune Response to Tumors as a Tool toward Immunotherapy

    Get PDF
    Until recently cancer medical therapy was limited to chemotherapy that could not differentiate cancer cells from normal cells. More recently with the remarkable mushroom of immunology, newer tools became available, resulting in the novel possibility to attack cancer with the specificity of the immune system. Herein we will review some of the recent achievement of immunotherapy in such aggressive cancers as melanoma, prostatic cancer, colorectal carcinoma, and hematologic malignancies. Immunotherapy of tumors has developed several techniques: immune cell transfer, vaccines, immunobiological molecules such as monoclonal antibodies that improve the immune responses to tumors. This can be achieved by blocking pathways limiting the immune response, such as CTLA-4 or Tregs. Immunotherapy may also use cytokines especially proinflammatory cytokines to enhance the activity of cytotoxic T cells (CTLs) derived from tumor infiltrating lymphocytes (TILs). The role of newly discovered cytokines remains to be investigated. Alternatively, an other mechanism consists in enhancing the expression of TAAs on tumor cells. Finally, monoclonal antibodies may be used to target oncogenes

    'Candidatus Phytoplasma solani' interferes with the distribution and uptake of iron in tomato

    Get PDF
    Background: \u2018Candidatus Phytoplasma solani\u2019 is endemic in Europe and infects a wide range of weeds and cultivated plants. Phytoplasmas are prokaryotic plant pathogens that colonize the sieve elements of their host plant, causing severe alterations in phloem function and impairment of assimilate translocation. Typical symptoms of infected plants include yellowing of leaves or shoots, leaf curling, and general stunting, but the molecular mechanisms underlying most of the reported changes remain largely enigmatic. To infer a possible involvement of Fe in the host-phytoplasma interaction, we investigated the effects of \u2018Candidatus Phytoplasma solani\u2019 infection on tomato plants (Solanum lycopersicum cv. Micro-Tom) grown under different Fe regimes. Results: Both phytoplasma infection and Fe starvation led to the development of chlorotic leaves and altered thylakoid organization. In infected plants, Fe accumulated in phloem tissue, altering the local distribution of Fe. In infected plants, Fe starvation had additive effects on chlorophyll content and leaf chlorosis, suggesting that the two conditions affected the phenotypic readout via separate routes. To gain insights into the transcriptional response to phytoplasma infection, or Fe deficiency, transcriptome profiling was performed on midrib-enriched leaves. RNA-seq analysis revealed that both stress conditions altered the expression of a large (> 800) subset of common genes involved in photosynthetic light reactions, porphyrin / chlorophyll metabolism, and in flowering control. In Fe-deficient plants, phytoplasma infection perturbed the Fe deficiency response in roots, possibly by interference with the synthesis or transport of a promotive signal transmitted from the leaves to the roots. Conclusions: \u2018Candidatus Phytoplasma solani\u2019 infection changes the Fe distribution in tomato leaves, affects the photosynthetic machinery and perturbs the orchestration of root-mediated transport processes by compromising shoot-to-root communication
    corecore