
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy-efficient adaptive machine learning on IoT end-nodes with class-dependent confidence / Daghero, F.; Burrello,
A.; Jahier Pagliari, D.; Benini, L.; Macii, E.; Poncino, M.. - ELETTRONICO. - (2020), pp. 1-4. ((Intervento presentato al
convegno 27th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2020 tenutosi a Virtual
conference nel 2020 [10.1109/ICECS49266.2020.9294863].

Original

Energy-efficient adaptive machine learning on IoT end-nodes with class-dependent confidence

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICECS49266.2020.9294863

Terms of use:
openAccess

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2909394 since: 2021-07-02T14:32:13Z

Institute of Electrical and Electronics Engineers Inc.

Energy-Efficient Adaptive Machine Learning on IoT
End-Nodes With Class-Dependent Confidence

Francesco Daghero∗, Alessio Burrello†, Daniele Jahier Pagliari∗, Luca Benini†‡, Enrico Macii§, Massimo Poncino∗
∗Department of Control and Computer Engineering, Politecnico di Torino, Italy - name.surname@polito.it

§Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Italy - enrico.macii@polito.it
†Energy-Efficient Embedded Systems Laboratory, University of Bologna, Italy - name.surname@unibo.it

‡Integrated Systems Laboratory, ETH Zurich, Switzerland - benini@iis.ee.ethz.ch

Abstract—Energy-efficient machine learning models that can
run directly on edge devices are of great interest in IoT
applications, as they can reduce network pressure and response
latency, and improve privacy. An effective way to obtain energy-
efficiency with small accuracy drops is to sequentially execute a
set of increasingly complex models, early-stopping the procedure
for “easy” inputs that can be confidently classified by the smallest
models. As a stopping criterion, current methods employ a single
threshold on the output probabilities produced by each model.
In this work, we show that such a criterion is sub-optimal
for datasets that include classes of different complexity, and
we demonstrate a more general approach based on per-classes
thresholds. With experiments on a low-power end-node, we show
that our method can significantly reduce the energy consumption
compared to the single-threshold approach.

I. INTRODUCTION

Running Machine Learning (ML) inference directly on IoT
edge devices can yield benefits in faster response times,
improved data privacy, and higher energy efficiency, by avoid-
ing the transmission of raw sensor data through energy-
hungry wireless channels [1], [2]. However, edge inference
requires specific optimizations to make complex ML models
manageable by battery-operated edge devices with limited
computing power. Hardware accelerators achieve impressive
efficiency but are only affordable for high-budget and high-
volume products [1]. In all other cases, the inference has to be
performed on standard microcontrollers (MCUs). Researchers
have investigated optimizations for ML inference on MCUs,
such as quantization [3], [4], and efficient software implemen-
tations of the most critical computational kernels [2], [5].

In parallel, platform-independent optimizations of ML mod-
els that simplify their execution on constrained devices have
also been proposed. In particular, one recent trend is based on
tuning the complexity of the inference at runtime, based on the
difficulty of the processed input [7]–[11]. The idea is that when
inputs are not all equally difficult to process, using a single
ML model would either yield an unnecessary complexity
for “easy” inputs or an accuracy loss for “difficult” ones.
Therefore, these approaches resort to an adaptive inference,
where multiple models are used in different combinations
depending on the input.

All solutions of this kind use variants of the same policy
to determine the classification confidence of each model, and

consequently, which subset to execute for a given input.
Specifically, they impose a global threshold on the so-called
Score Margin (SM), i.e. the difference between the two
largest class probabilities produced in output by a model [7].
However, this metric is only effective in identifying “difficult”
inputs for datasets in which all classes have similar complexity.

In this work, we show that a global SM is sub-optimal when,
instead, classes are not all equally difficult to process, and that
superior results can be obtained using a different threshold per-
class. We then propose a methodology for setting such class-
dependent thresholds given a desired balance between energy
consumption and accuracy. With experiments on different
datasets, we show that our method is able to reduce the
energy consumption of 10-60% compared to a single-threshold
approach for the same accuracy level.

II. BACKGROUND AND RELATED WORK

We target a family of “adaptive” methods for energy-
efficient inference, whose generic block diagram is shown in
Figure 1 for a classification task. A set of ML models (M1-

…M1 (Model 1) MN (Model N)

Policy

Input

Probs 1 Probs N

Trig 1 Trig N

Final Class

Accuracy/Energy

Fig. 1: Generic scheme of energy-driven adaptive inference.

MN) are sorted by increasing complexity (and corresponding
accuracy) and sequentially executed in that order. After the
execution of each model, the block labeled policy measures
its prediction confidence to decide whether to end the classifi-
cation (for “easy” inputs) or to continue with the next model.

Pioneers of this field, the authors of [7] proposed the so
called big/little DNNs, where the models are two convolutional
neural networks (CNNs) of increasing size. Following works
have improved this idea avoiding the use of separate DNNs
to reduce the overall memory footprint, and extending the

technique to N > 2. In [8], “little” DNNs are constructed
eliminating some channels from the “big” one, thus reusing
common weights, whereas in [9] they are obtained progres-
sively decreasing the quantization bit-width. In [10], instead,
increasingly complex DNNs are constructed using different
sets of layers from a single “big” model.

These approaches typically measure confidence as the dif-
ference between the first and second largest probabilities
produced by the model (so-called Score Margin - SM) [7]–
[11]. As an example, an adaptive inference method with N = 2
models generates the following prediction for input i:

y =

{
M1(i) if SM(M1(i)) > th

M2(i) if SM(M1(i)) ≤ th
(1)

where th is a SM threshold. The energy consumption of the
entire system depends on the complexity of the two models
and on the confidence of M1 predictions:

Etot = E(M1) + E(M2) ∗ P[SM(M1(i)) ≤ th] (2)

where P indicates probability. Clearly, if the policy always
invokes both models, the system reaches the same accuracy
of M2 but with an energy overhead, due to running 2 models
instead of one. If M2 is never called, instead, the accuracy
becomes equal to M1. Therefore, the key element of this
method is a reliable confidence estimator, able to distinguish
easy from difficult inputs.

In the rest of the paper, we focus on systems with N = 2
classifiers, such as the big/little DNNs in [7], [9], to simplify
the notation and the corresponding considerations. However,
the same approach can be extended to N > 2, and this will
be the subject of our future work.

III. CLASS-DEPENDENT CONFIDENCE ESTIMATION

All methods described in Section II use a single SM
threshold in (1), regardless of the class. This corresponds to
implicitly assuming that ‘small’ models are equally accurate in
processing inputs from all classes. However, for many datasets,
this assumption does not hold, as shown in Figure 2. The his-
tograms show the SM distribution for all validation set samples
of the GTSRB dataset [12] that, when processed with a logistic
regressor (i.e. a single-layer NN), are predicted as belonging
to classes 3 and 7. The blue (red) histogram corresponds to
samples that are classified correctly (incorrectly) by the model.
The classifier and dataset are described in detail in Section IV.

Fig. 2: Example of class-dependent SM distribution.

The figure clearly shows why a single SM threshold is sub-
optimal. When the predicted class is 7, an SM threshold of
th = 0.15 would be sufficient to correctly invoke the next
bigger model for most of the (few) inputs that are wrongly
classified, while avoiding further useless processing for most
correctly classified samples. In contrast, the same th applied
to class 3 would significantly degrade the accuracy, assuming
as correct many wrong classifications. In other words, when
this classifier predicts that an input belongs to class 7, the
prediction should be assumed correct with high confidence,
while inputs predicted as class 3 should be considered with
skepticism. This corresponds to designing a policy able to stop
the classification often when the top class is 7 (even if the
SM is not so high) and less often when the top class is 3
(only when the SM is close to 1), thus avoiding energy wastes
or accuracy losses. Clearly, the shape of a SM distribution
depends both on the nature of the data and on the selected
classifier, but these kinds of differences are inevitable when
classes have different inherent complexity.

Therefore, we propose a new early-stopping policy that uses
class-dependent thresholds thc, optimized as hyper-parameters
on the validation set. Specifically, we find the value of thc for
each class c as follows:

thc = argmin
thc

(FPc(thc) + αEc(thc)), ∀c (3)

The two addends in (3) measure the accuracy of the classifi-
cation and the energy consumption of the overall system for
class c respectively. In particular, FPc(thc) is the number of
false positives generated by the system for class c, i.e.:

FPc(thc) =

Mc∑
i:true(i) 6=c

(SM1(i)) > thc ∨M2(i) 6= true(i))

(4)
where Mc is the number of inputs for which the “little”
model predicts class c, true(i) is the true label of input i,
and SM1(i) is the score margin for i computed using the
probabilities of the “little” model M1.

As formalized in (2), in a system with two models, the
number of invocations of the “big” model is proportional to
the energy consumption. Therefore we use:

Ec(thc) =

Mc∑
i=1

SM1(i) ≤ thc (5)

The additional factor α in (3) is used to balance energy and
accuracy in the optimization. For example, α = 1 corresponds
to giving equal importance to energy and accuracy. Each
single α value yields a corresponding set of thc (one per
class). Exactly as with the standard SM method, users can
switch between these sets at runtime, for example giving more
importance to energy saving when the battery is low.

Figure 3 shows the objective function (3) and its two ad-
dends as a function of thc for the same classes of Figure 2 and
for two values of α. A black dot highlights the minimums. As
expected, for a given value of α, our method selects a smaller
thc for the easier class 7. Moreover, increasing α, i.e. giving

Fig. 3: Objective function for a LeNet-5-like model, for two
classes of the GTSRB dataset [12] and two values of α.

more importance to energy reduction, shifts the thresholds
for both classes towards smaller values, corresponding to less
frequent executions of the “big” model.

The minimization of (3) is performed offline, and requires
a single inference on the validation data with each model in
the ensemble, storing the corresponding output probabilities
and correct labels. Then, the optimal thc can be obtained with
any minimization method (even a grid search). At runtime, the
edge device only needs to store the pre-computed array of thc
corresponding to each desired value of α. So, the policy has
a negligible impact in terms of both memory occupation and
execution time, i.e. a single SM computation and comparison
with a threshold, exactly as in the single-threshold approach.

Importantly, if all classes in the dataset have a similar
difficulty, hence similar SM distribution, our method simply
reduces to the single-threshold approach. In fact, the shape of
(3) for all classes will be very similar, and so will be also the
optimum values of thc. Our method can be outperformed by
the single-threshold solution only due to random mismatches
between validation and test data distributions (which should
not occur in ML best practice) since thcs are set based on the
former, e.g. if validation data for a given class are very difficult
while test data are easy, or vice versa. Further, our approach
is orthogonal to the way in which individual models are built,
so it can be used in combination with any of [7]–[10].

IV. EXPERIMENTAL RESULTS

We tested our proposed method on the STM32H743 MCU
by STMicroelectronics, based on an ARM Cortex-M7. All
results refer to floating-point classifiers deployed using X-
CUBE-AI. We considered 3 datasets for image classification
and speech recognition tasks. On CIFAR10 [13], we used
LeNet-5 and MobileNetV1 [6] CNNs as the “little” and
“big” classifier respectively. Moreover, we also targeted the
German Traffic Sign Recognition Benchmark (GTSRB) [12],
with 60x60 input images, using a logistic regressor as the
“little” classifier and LeNet-5 as the “big” one. Finally, we
considered the Google Speech Commands (GSP) [14] dataset,

feeding 32x32 spectrograms for each word to the classifiers,
and reducing the number of classes from 30 to 12 as in [15],
with a “bin class’ for uncommon words. For this benchmark,
we used the same “little” and “big” models as CIFAR-10.
Models were minimally adapted with respect to the original
architectures, changing the first and last layer to match the
input size and classes of each dataset. All results are obtained
on test sets, while thc arrays are optimized on validation sets.

A. Energy versus accuracy trade-off

Figure 4 shows the trade-off between accuracy and av-
erage energy per input obtained with our method for the
three datasets. The three curves are obtained varying α, and
the graph also reports the results obtained by M1 and M2
when used individually (dots). Table I reports the maximum

Fig. 4: Energy vs accuracy trade-off of the proposed method.
Average energy per input normalized to M2 for each dataset.

TABLE I: Maximum accuracy and energy for the proposed
method. Relative differences w.r.t. M2 alone in brackets.

Accuracy [%] Energy [mJ]
CIFAR10 [15] 79.46 [+0.22] 98.76 [- 11.4%]
GTSRB [17] 84.54 [+0.76] 10.98 [- 56.0%]
GSP [16] 90.43 [-1.01] 40.01 [- 64.4%]

accuracy obtained with the proposed approach on the three
datasets, and the average energy per input needed to obtain
that accuracy, measured on the target hardware platform. As
shown, an accuracy comparable (and sometimes superior) to
that of the “big” model is reached without invoking M2 for
all data, thus significantly reducing the average energy con-
sumption per input. Depending on the dataset, these savings
range from 11% to more than 60%.

B. Comparison with single-threshold methods

Table II compares the proposed method with the single-
threshold SM approach of [7]. It reports the average en-
ergy consumption per input at different fixed trade-off points
and the corresponding energy difference (in %) between our
method and the single-threshold one. For example, the column
labeled “25%” reports the average energy needed to reach an
accuracy that is equal to the accuracy of M1 plus a 25% of
the difference between M2 and M1, while the column labeled
“100%” corresponds to the energy needed to reach exactly the
accuracy of M2, etc. The column “Max. reduction” reports the
accuracy condition for which the gain of our method compared
to the single-threshold one is maximum.

Energy [mJ] @ Normalized accuracy gain w.r.t. M1 Max. reduction
25% 50% 75% 100% Acc/Energy

CIFAR10 12.37 [-9.6%] 27.46 [-4.5%] 46.76 [-2.0%] 94.26 [-3.2%] 63.00/8.98 [-14.1%]
GTSRB 2.85 [-4.4%] 4.08 [+1.0%] 5.70 [+6.6%] 8.98 [-26.4%] 84.40/10.05 [-59.3%]
GSP 5.44 [-24.1%] 10.81 [-14.88%] 17.95 [-12.53%] 34.51 [-17.28%] 79.8/5.44 [-24.1%]

TABLE II: Energy consumption in different accuracy points. Difference with respect to a single-threshold SM in brackets.

Our method reduces the average energy compared to a
single-threshold approach in most accuracy conditions, with
gains of 10-60% depending on the dataset. Results on CI-
FAR10 are the least impressive, since this dataset contains 10
classes of similar difficulty, while both GSP and GTSRB show
more variability. The few cases where a slight energy increase
is obtained can be charged to the difference between validation
and test data distributions, as explained in Section III.

Figure 5 shows a qualitative example (from GTSRB) of
the fact that our method tends to assign larger SM thresholds
(corresponding to more invocations of the “big” model) to
difficult classes. Indeed the two speed limit signs, which could

Class

thc 0.77 0.73 0.43

M2 calls [%] 54.9 63.3 3.2

Fig. 5: Example of “difficult” and “easy” classes for the
GTSRB dataset. thc and % of M2 calls are for α = 0.05.

be easily mistaken for one another are assigned higher thc.
In contrast, the “stop” sign, which is easily recognizable, is
assigned a lower thc to avoid useless “big” model executions.
Similar considerations can be done for the other datasets.

C. Effect on imbalanced datasets

Our method is also effective when training and val/test data
are differently balanced. This happens, for example, when
using a pre-trained model whose training class frequencies
are not those expected in the final application (e.g. a generic
speech recognition model used to perform wake-word recog-
nition). This negatively impacts single-threshold SM methods
such as [7]–[9], since classes with low prior probabilities
yield lower scores, and therefore generate lower SM. A single-
threshold approach would wrongly assume that the classifier is
not confident about these predictions, and call “big” model(s)
more often, even if those lower margins are only due to a class
being less present in the training set, and not to its difficulty.

Class-dependent thresholds can automatically compensate
for these priors mismatches, allowing accurate classification
without the need of re-training. The only requirement is the
availability of a small correctly balanced validation set to
optimize thc. To show this, we have artificially unbalanced
the training set of CIFAR10, undersampling 8 random classes
to 1/5 of the original images. We have then computed thc on
the (balanced) validation set and evaluated the average energy
and accuracy of our method on the test set. Figure 6 shows the
percentage energy saving with respect to a single-threshold ap-
proach for different accuracy points. While our method yields

consistent savings also on the normally balanced CIFAR10,
the benefits increase significantly when training and test data
are not similarly balanced, reaching more than 40%.

0 10 20 30 40 50 60 70 80 90 100
Normalized Accuracy Gain [%]

0

10

20

30

40

Re
l.

En
er

gy
 S

av
in

g
[%

] Balanced
Unbalanced

Fig. 6: Energy gains of class-dependent SM thresholds on
CIFAR10 and its artificially unbalanced version.

V. CONCLUSIONS

We have presented a novel policy to guide the execution
of energy-driven adaptive ML inference. Our approach uses
class-dependent SM thresholds to estimate the confidence of
a prediction, based on the assumption that classes are not all
equally difficult to distinguish in most datasets. With experi-
ments on a real edge MCU, we have shown that this approach
yields consistent energy savings at iso-accuracy compared to
a solution that uses a single SM threshold.

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[2] L. Lai and N. Suda, “Enabling deep learning at the lot edge,” in ICCAD,
2018, pp. 1–6.

[3] J. Choi et al, “Pact: Parameterized clipping activation for quantized
neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[4] D. Jahier Pagliari et al, “Energy-efficient Digital Processing via Approxi-
mate Computing”, Smart Systems Integration and Simulation, pp.55–89,
Springer, 2016.

[5] A. Garofalo et al, “Pulp-nn: accelerating quantized neural networks on
parallel ultra-low-power risc-v processors,” Philos. Trans. R. Society A,
vol. 378, no. 2164, p. 20190155, 2020.

[6] A. G. Howard et al, “Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[7] E. Park et al, “Big/little deep neural network for ultra low power
inference,” in CODES+ISSS, 2015, pp. 124–132.

[8] H. Tann et al, “Runtime configurable deep neural networks for energy-
accuracy trade-off,” in CODES+ISSS, 2016, pp. 1–10.

[9] D. Jahier Pagliari et al, “Dynamic Bit-width Reconfiguration for Energy-
Efficient Deep Learning Hardware,” in ISLPED, 2018, pp. 47:1—-47:6.

[10] P. Panda et al, “Conditional Deep Learning for Energy-Efficient and
Enhanced Pattern Recognition,” in DATE, 2016, pp. 475–480.

[11] D. Jahier Pagliari et al, “Dynamic Beam Width Tuning for Energy-
Efficient Recurrent Neural Networks,” in GLSVLSI, 2019, pp. 69–74.

[12] J. Stallkamp et al, “Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition,” Neural Networks, vol. 32, pp.
323–332, 2012.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[14] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[15] https://github.com/tugstugi/pytorch-speech-commands

