1,569 research outputs found

    A statistical comparison of the optical/UV and X-ray afterglows of gamma-ray bursts using the Swift Ultraviolet Optical and X-ray Telescopes

    Get PDF
    We present the systematic analysis of the Ultraviolet/Optical Telescope (UVOT) and X-ray Telescope (XRT) light curves for a sample of 26 Swift gamma-ray bursts (GRBs). By comparing the optical/UV and X-ray light curves, we found that they are remarkably different during the first 500 s after the Burst Alert Telescope trigger, while they become more similar during the middle phase of the afterglow, i.e. between 2000 and 20 000 s. If we take literally the average properties of the sample, we find that the mean temporal indices observed in the optical/UV and X-rays after 500 s are consistent with a forward-shock scenario, under the assumptions that electrons are in the slow cooling regime, the external medium is of constant density and the synchrotron cooling frequency is situated between the optical/UV and X-ray observing bands. While this scenario describes well the averaged observed properties, some individual GRB afterglows require different or additional assumptions, such as the presence of late energy injection. We show that a chromatic break (a break in the X-ray light curve that is not seen in the optical) is present in the afterglows of three GRBs and demonstrate evidence for chromatic breaks in a further four GRBs. The average properties of these breaks cannot be explained in terms of the passage of the synchrotron cooling frequency through the observed bands, nor a simple change in the external density. It is difficult to reconcile chromatic breaks in terms of a single component outflow and instead, more complex jet structure or additional emission components are required

    The history of the Y chromosome in man

    Get PDF
    Studies of the Y chromosome over the past few decades have opened a window into the history of our species, through the reconstruction and exploitation of a patrilineal (Y-genealogical) tree based on several hundred single-nucleotide variants (SNVs). A new study validates, refines and extends this tree by incorporating >65,000 Y-linked variants identified in 1,244 men representing worldwide diversity

    Bicyclic Boronates as Potent Inhibitors of AmpC, the Class C β-Lactamase from Escherichia coli

    Get PDF
    Resistance to β-lactam antibacterials, importantly via production of β-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) β-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections. We report kinetic and crystallographic studies on the inhibition of AmpC, the class C β-lactamase from Escherichia coli, by bicyclic boronates, including taniborbactam, with different C-3 side chains. The combined studies reveal that an acylamino side chain is not essential for potent AmpC inhibition by active site binding bicyclic boronates. The tricyclic form of taniborbactam was observed bound to the surface of crystalline AmpC, but not at the active site, where the bicyclic form was observed. Structural comparisons reveal insights into why active site binding of a tricyclic form has been observed with the NDM-1 MBL, but not with other studied β-lactamases. Together with reported studies on the structural basis of inhibition of class A, B and D β-lactamases, our data support the proposal that bicyclic boronates are broad-spectrum β-lactamase inhibitors that work by mimicking a high energy ‘tetrahedral’ intermediate. These results suggest further SAR guided development could improve the breadth of clinically useful β-lactamase inhibition

    TSR: A storage and cooling ring for HIE-ISOLDE

    Get PDF
    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project

    The 2021 outburst of the recurrent nova RS Ophiuchi observed in X-rays by the Neil Gehrels Swift Observatory: a comparative study

    Get PDF
    On 2021 August 8, the recurrent nova RS Ophiuchi erupted again, after an interval of 15.5 yr. Regular monitoring by the Neil Gehrels Swift Observatory began promptly, on August 9.9 (0.37 day after the optical peak), and continued until the source passed behind the Sun at the start of November, 86 days later. Observations then restarted on day 197, once RS Oph emerged from the Sun constraint. This makes RS Oph the first Galactic recurrent nova to have been monitored by Swift throughout two eruptions. Here we investigate the extensive X-ray datasets from 2006 and 2021, as well as the more limited data collected by EXOSAT in 1985. The hard X-rays arising from shock interactions between the nova ejecta and red giant wind are similar following the last two eruptions. In contrast, the early super-soft source (SSS) in 2021 was both less variable and significantly fainter than in 2006. However, 0.3–1 keV light-curves from 2021 reveal a 35 s quasi-periodic oscillation consistent in frequency with the 2006 data. The Swift X-ray spectra from 2021 are featureless, with the soft emission typically being well parametrized by a simple blackbody, while the 2006 spectra showed much stronger evidence for superimposed ionized absorption edges. Considering the data after day 60 following each eruption, during the supersoft phase the 2021 spectra are hotter, with smaller effective radii and lower wind absorption, leading to an apparently reduced bolometric luminosity. We explore possible explanations for the gross differences in observed SSS behaviour between the 2006 and 2021 outbursts

    Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole

    Get PDF
    In recent years, searches of archival X-ray data have revealed galaxies exhibiting nuclear quasi-periodic eruptions with periods of several hours. These are reminiscent of the tidal disruption of a star by a supermassive black hole. The repeated, partial stripping of a white dwarf in an eccentric orbit around an ~105 M⊙ black hole provides an attractive model. A separate class of periodic nuclear transients, with much longer timescales, have recently been discovered optically and may arise from the partial stripping of a main-sequence star by an ~107 M⊙ black hole. No clear connection between these classes has been made. We present the discovery of an X-ray nuclear transient that shows quasi-periodic outbursts with a period of weeks. We discuss possible origins for the emission and propose that this system bridges the two existing classes outlined above. This discovery was made possible by the rapid identification, dissemination and follow-up of an X-ray transient found by the new live Swift-XRT transient detector, demonstrating the importance of low-latency, sensitive searches for X-ray transients

    Delayed involution of lactation presenting as a non-resolving breast mass: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Involution of lactation is a physiological process. Rarely, it may be delayed and troublesome for the lactating woman. Though lactation-induced changes in breast are well known, morphological features of delayed involution are not clear.</p> <p>Case presentation</p> <p>We report a case of a 22-year-old lactating mother who presented with a painful, non-resolving breast mass 5 months after delivery. Clinically, it simulated an inflammatory carcinoma. Histopathology, however, revealed involuting lactational changes.</p> <p>Conclusion</p> <p>To the best of our knowledge, lactational involution with such a presentation has not been described in the English literature. The case needs to be reported so that this entity can be considered among the differential diagnoses of breast masses in a lactating patient.</p

    Age, extent and carbon storage of the central Congo Basin peatland complex

    Get PDF
    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10(15) grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by 36 per cent, to 104.7 petagrams of carbon (minimum estimate of 69.6 petagrams of carbon; maximum estimate of 129.8 petagrams of carbon). This stored carbon is vulnerable to land-use change and any future reduction in precipitation
    • …
    corecore