395 research outputs found
Constraints on diffuse neutrino background from primordial black holes
We calculated the energy spectra and the fluxes of electron neutrino emitted
in the process of evaporation of primordial black holes (PBHs) in the early
universe. It was assumed that PBHs are formed by a blue power-law spectrum of
primordial density fluctuations. We obtained the bounds on the spectral index
of density fluctuations assuming validity of the standard picture of
gravitational collapse and using the available data of several experiments with
atmospheric and solar neutrinos. The comparison of our results with the
previous constraints (which had been obtained using diffuse photon background
data) shows that such bounds are quite sensitive to an assumed form of the
initial PBH mass function.Comment: 18 pages,(with 7 figures
General relativistic Sagnac formula revised
The Sagnac effect is a time or phase shift observed between two beams of
light traveling in opposite directions in a rotating interferometer. We show
that the standard description of this effect within the framework of general
relativity misses the effect of deflection of light due to rotational inertial
forces. We derive the necessary modification and demonstrate it through a
detailed analysis of the square Sagnac interferometer rotating about its
symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac
interferometer in the synchronization procedure of remote clocks as well as its
analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure
Evolution of Magnetic Fields around a Kerr Black Hole
The evolution of magnetic fields frozen to a perfectly conducting plasma
fluid around a Kerr black hole is investigated. We focus on the plunging region
between the black hole horizon and the marginally stable circular orbit in the
equatorial plane. Adopting the kinematic approximation where the dynamical
effects of magnetic fields are ignored, we exactly solve Maxwell's equations
with the assumptions that the geodesic motion of the fluid is stationary and
axisymmetric, the magnetic field has only radial and azimuthal components and
depends only on time and radial coordinates. We show that the stationary state
of the magnetic field in the plunging region is uniquely determined by the
boundary conditions at the marginally stable circular orbit. If the magnetic
field at the marginally stable circular orbit is in a stationary state, the
magnetic field in the plunging region will quickly settle into a stationary
state if it is not so initially, in a time determined by the dynamical time
scale. The radial component of the magnetic field at the marginally stable
circular orbit is more important than the toroidal component in determining the
structure and evolution of the magnetic field in the plunging region. Even if
at the marginally stable circular orbit the toroidal component is zero, in the
plunging region a toroidal component is quickly generated from the radial
component by the shear motion of the fluid. Finally, we show that the dynamical
effects of magnetic fields are unimportant in the plunging region if they are
negligible on the marginally stable circular orbit. This supports the
``no-torque inner boundary condition'' of thin disks, contrary to the claim in
the recent literature.Comment: 48 pages, including 13 figures; version with full resolution Figs at
http://cfa-www.harvard.edu/~lli/astro-ph/mag_evol.p
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
On exact solutions for quantum particles with spin S= 0, 1/2, 1 and de Sitter event horizon
Exact wave solutions for particles with spin 0, 1/2 and 1 in the static
coordinates of the de Sitter space-time model are examined in detail. Firstly,
for a scalar particle, two pairs of linearly independent solutions are
specified explicitly: running and standing waves. A known algorithm for
calculation of the reflection coefficient on the background of
the de Sitter space-time model is analyzed. It is shown that the determination
of R_{\epsilon j} requires an additional constrain on quantum numbers \epsilon
\rho / \hbar c >> j, where \rho is a curvature radius. When taken into account
of this condition, the R_{\epsilon j} vanishes identically. It is claimed that
the calculation of the reflection coefficient R_{\epsilon j} is not required at
all because there is no barrier in an effective potential curve on the
background of the de Sitter space-time. The same conclusion holds for arbitrary
particles with higher spins, it is demonstrated explicitly with the help of
exact solutions for electromagnetic and Dirac fields.Comment: 30 pages. This paper is an updated and more comprehensive version of
the old paper V.M. Red'kov. On Particle penetrating through de Sitter
horizon. Minsk (1991) 22 pages Deposited in VINITI 30.09.91, 3842 - B9
Effect of event selection on jetlike correlation measurement in d+Au collisions at sNN=200Â GeV
AbstractDihadron correlations are analyzed in sNN=200Â GeV d+Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions
Beam-energy Dependence Of Charge Balance Functions From Au + Au Collisions At Energies Available At The Bnl Relativistic Heavy Ion Collider
Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq)Balance functions have been measured in terms of relative pseudorapidity (Δη) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at sNN=7.7GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at sNN=2.76TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at sNN=7.7 GeV implies that a QGP is still being created at this relatively low energy. © 2016 American Physical Society.942CNPq, Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgicoMinistry of Education and Science of the Russian FederationMOE, Ministry of Education of the People's Republic of ChinaMOST, Ministry of Science and Technology of the People's Republic of ChinaNRF-2012004024, National Research FoundationNSF, National Stroke FoundationConselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq
- …