618 research outputs found

    Wavelength independent interferometer

    Get PDF
    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source

    Wide-Field Optic for Autonomous Acquisition of Laser Link

    Get PDF
    An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to reduce the incident angle down to only a few degrees. In the presented embodiment, the filter diameter is more than ten times larger than the entrance aperture. Specifically, the filter has a clear aperture of about 51 mm. The optical design is refractive, and is comprised of nine custom refractive elements and an interference filter. The restricted maximum angle through the narrow-band filter ensures the efficient use of a 2-nm noise equivalent bandwidth spectral width optical filter at low elevation angles (where the range is longest), at the expense of less efficiency for high elevations, which can be tolerated because the range at high elevation angles is shorter. The image circle is 12 mm in diameter, mapped to 80 x 360 of sky, centered on the zenith

    Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures

    Get PDF
    Alignment of two-element telescopes is a classic problem. During recent integration and test of the Space Interferometry Mission s (SIM s) Astrometric Beam Combiner (ABC), the innovators were faced with aligning two such telescope subsystems in the presence of a further complication: only two small subapertures in each telescope s pupil were accessible for measuring the wavefront with a Fizeau interferometer. This meant that the familiar aberrations that might be interpreted to infer system misalignments could be viewed only over small sub-regions of the pupil, making them hard to recognize. Further, there was no contiguous surface of the pupil connecting these two subapertures, so relative phase piston information was lost; the underlying full-aperture aberrations therefore had an additional degree of ambiguity. The solution presented here is to recognize that, in the absence of phase piston, the Zygo measurements primarily provide phase tilt in the subaperture windows of interest. Because these windows are small and situated far from the center of the (inaccessible) unobscured full aperture, any aberrations that are higher-order than tilt will be extremely high-order on the full aperture, and so not necessary or helpful to the alignment. Knowledge of the telescope s optical prescription allows straightforward evaluation of sensitivities (subap mode strength per unit full-aperture aberration), and these can be used in a predictive matrix approach to move with assurance to an aligned state. The technique is novel in every operational way compared to the standard approach of alignment based on full-aperture aberrations or searching for best rms wavefront. This approach is closely grounded in the observable quantities most appropriate to the problem. It is also more intuitive than inverting full phase maps (or subaperture Zernike spectra) with a ray-tracing program, which must certainly work in principle, but in practice met with limited success. Even if such classical alignment techniques became practical, the techniques reported here form a reassuringly transparent and intuitive check on the course of the alignment with very little computational effort

    XMM and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift

    Full text link
    We combine bright XMM data with the Chandra Deep Field South observations in order to explore the behavior of the intrinsic AGN absorption, as a function of redshift and luminosity.Our sample consists of 359 sources selected in the hard 2-8 keV band, spanning the flux range 6\times10^{-16}-$3\times10^{-13} erg s^-1 cm^-2 with a high rate of spectroscopic or photometric redshift completeness (100 and 85 per cent respectively for the Chandra and XMM data. We derive the column density values using X-ray spectral fits. We find that the fraction of obscured AGN falls with increasing luminosity in agreement with previous findings. The fraction of obscured AGN shows an apparent increase at high redshifts (z>2). Simulations show that this effect can be most probably attributed to the fact that at high redshifts the column densities are overestimated.Comment: 14 pages, 9 figures, A&A accepte

    Mitochondrial DNA clocks and the phylogeny of Danaus butterflies

    Get PDF
    Molecular clocks based on sequence change in mitochondrial (mt) DNA have been useful for placing molecular phytogenies in their historical context, thereby enhancing evolutionary insight. Nonetheless, despite their importance to phylogeographers, the methodology is controversial. Here we report on two mitochondrial clocks for the butterfly genus Danaus based on sequences from the cytochrome c oxidase subunit I (COI) and small subunit 12S rRNA (12S) genes. Both clocks are, within the context of Danaus, reliable time-keepers, mutually consistent and, respectively, in agreement with a crustacean COI clock and a molluscan 12S clock. Though we have no fossils with which directly to calibrate sequence divergence rates for Danaus, the 12S molluscan and COI crustacean clocks chosen for comparison were calibrated to radiometrically dated geomorphological events. Our results indicate that the Danaus COI clock evolves approximately four times faster than the 12S clock. Differences between rates of sequence change in terminal sister-taxa are small and likelihood ratio tests do not reject a hypothesis that evolution has been clock-like. The species Danaus chrysippus is paraphyletic and, therefore, invalid. Danaus probably split from its sister-genus Tirumala around 4.9 ± 0.3 million years ago in the early Pliocene

    Results from the Atacama B-mode Search (ABS) Experiment

    Full text link
    The Atacama B-mode Search (ABS) is an experiment designed to measure cosmic microwave background (CMB) polarization at large angular scales (>40\ell>40). It operated from the ACT site at 5190~m elevation in northern Chile at 145 GHz with a net sensitivity (NEQ) of 41 μ\muKs\sqrt{\rm s}. It employed an ambient-temperature sapphire half-wave plate rotating at 2.55 Hz to modulate the incident polarization signal and reduce systematic effects. We report here on the analysis of data from a 2400 deg2^2 patch of sky centered at declination 42-42^\circ and right ascension 2525^\circ. We perform a blind analysis. After unblinding, we find agreement with the Planck TE and EE measurements on the same region of sky. We marginally detect polarized dust emission and give an upper limit on the tensor-to-scalar ratio of r<2.3r<2.3 (95% cl) with the equivalent of 100 on-sky days of observation. We also present a new measurement of the polarization of Tau A and introduce new methods associated with HWP-based observations.Comment: 38 pages, 11 figure

    Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study

    Get PDF
    Background Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent). Methods/Design This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded. In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
    corecore