235 research outputs found

    Write-read 3D patterning with a dual-channel nanopipette

    Get PDF
    Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to architect and build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30−50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillars, zigzag and Γ-like structures, as well as permitting the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high resolution 3D “printing” (writing) and read-out at the nanoscale

    Electrochemical control of calcium carbonate crystallization and dissolution in nanopipettes

    Get PDF
    Electrochemically-controlled nanopipettes are becoming increasingly versatile tools for a diverse range of sequencing, sizing and imaging applications. Herein, the use of nanopipettes to induce and monitor quantitatively crystallization and dissolution in real time is considered, using CaCO3 in aqueous solution as an exemplar system. The bias between a quasi-reference counter electrode (QRCE) in a nanopipette and one in a bulk solution, is used to mix (or de-mix) two different solutions by ion migration and drive either growth or dissolution depending on the polarity. Furthermore, Raman spectroscopy can be applied simultaneously to identify polymorphs formed in the nanopipette. The technique is supported with a robust finite element method (FEM) model that allows the extraction of time-dependent saturation levels and mixing characteristics at the nanoscale. The technique shows great promise as a tool for rapidly screening growth additives and inhibitors, allowing eight different additives to be ranked in order of efficacy for crystal growth rate inhibition

    Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy (SICM) – scanning electrochemical microscopy (SECM)

    Get PDF
    A multifunctional dual-channel scanning probe nanopipette that enables simultaneous scanning ion conductance microscopy (SICM) and scanning electrochemical microscopy (SECM) measurements is demonstrated to have powerful new capabilities for spatially mapping the uptake of molecules of interest at living cells. One barrel of the probe is filled with electrolyte and the molecules of interest and is open to the bulk solution for both topographical feedback and local delivery to a target interface, while a solid carbon electrode in the other barrel measures the local concentration and flux of the delivered molecules. This setup allows differentiation in molecular uptake rate across several regions of single cells with individual measurements at nanoscale resolution. Further, operating in a ‘hopping mode’, where the probe is translated towards the interface (cell) at each point allows self-referencing to be employed, in which the carbon electrode response is calibrated at each and every pixel for comparison to the bulk measurement. This is particularly important for measurements in living systems where an electrode response may change over time. Finite element method (FEM) modeling places the technique on a quantitative footing to allow the response of the carbon electrode and local delivery rates to be quantified. The technique is extremely versatile, with the local delivery of molecules highly tuneable via control of the SICM bias to promote or restrict migration from the pipette orifice. It is expected to have myriad applications from drug delivery to screening catalysts

    Frontiers in nanoscale electrochemical imaging : faster, multifunctional and ultrasensitive

    Get PDF
    A wide range of interfacial physicochemical processes, from electrochemistry to the functioning of living cells involve spatially localized chemical fluxes that are associated with specific features of the interface. Scanning electrochemical probe microscopes (SEPMs) represent a powerful means of visualizing interfacial fluxes, and this Feature Article highlights recent developments that have radically advanced the speed, spatial resolution, functionality and sensitivity of SEPMs. A major trend has been a coming together of SEPMs that developed independently, and the use of established SEPMs in completely new ways, greatly expanding their scope and impact. The focus is on nanopipette-based SEPMs, including scanning ion conductance microscopy (SICM), scanning electrochemical cell microscopy (SECCM), and hybrid techniques thereof, particularly with scanning electrochemical microscopy (SECM). Nanopipette-based probes are made easily, quickly and cheaply with tunable characteristics. They are reproducible and can be fully characterized, and their reponse can be modeled in considerable detail, so that quantitative maps of chemical fluxes and other properties (e.g. local charge) can be obtained and analyzed. This article provides an overview on the use of these probes for high speed imaging, to create movies of electrochemical processes in action, to carry out multifunctional mapping, such as simultaneous topography-charge and topography-activity, and to create nanoscale electrochemical cells for the detection, trapping and analysis of single entities, particularly individual molecules and nanoparticles (NPs). These studies provide a platform for the further application and diversification of SEPMs across a wide range of interfacial science

    Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles

    Get PDF
    The characterization of electrocatalytic reactions at individual nanoparticles (NPs) is presently of considerable interest but very challenging. Herein, we demonstrate how simple-to-fabricate nanopipette probes with diameters of approximately 30 nm can be deployed in a scanning ion conductance microscopy (SICM) platform to simultaneously visualize electrochemical reactivity and topography with high spatial resolution at electrochemical interfaces. By employing a self-referencing hopping mode protocol, whereby the probe is brought from bulk solution to the near-surface at each pixel, and with potential-time control applied at the substrate, current measurements at the nanopipette can be made with high precision and resolution (30 nm resolution, 2600 pixels ÎŒm–2, <0.3 s pixel−1) to reveal a wealth of information on the substrate physicochemical properties. This methodology has been applied to image the electrocatalytic oxidation of borohydride at ensembles of AuNPs on a carbon fiber support in alkaline media, whereby the depletion of hydroxide ions and release of water during the reaction results in a detectable change in the ionic composition around the NPs. Through the use of finite element method simulations, these observations are validated and analyzed to reveal important information on heterogeneities in ion flux between the top of a NP and the gap at the NP-support contact, diffusional overlap and competition for reactant between neighboring NPs, and differences in NP activity. These studies highlight key issues that influence the behavior of NP assemblies at the single NP level and provide a platform for the use of SICM as an important tool for electrocatalysis studies

    Socioeconomic position and childhood sedentary time: evidence from the PEACH project

    Get PDF
    BACKGROUND: Associations between socioeconomic position (SEP) and sedentary behaviour in children are unclear. Existing studies have used aggregate measures of weekly sedentary time that could mask important differences in the relationship between SEP and sedentary time at different times of the day or between weekdays and weekend days. These studies have also employed a variety of measures of SEP which may be differentially associated with sedentary time. This paper examines associations of multiple indicators of SEP and accelerometer-measured, temporally specific, sedentary time in school children. METHODS: Between 2006 and 2007 sedentary time data (minutes spent below 100 accelerometer counts per minute) for weekdays before-school (7.00-8.59AM), during school-time (9.00AM-2.59PM) and after-school (3.00PM-11.00PM), and weekend days were recorded for 629 10–11 year old children using accelerometers. Ordinary least squares regression was used to examine associations with 5 indicators of SEP (area deprivation, annual household income, car ownership, parental education and access to a private garden). Covariates were; gender, BMI, minutes of daylight, accelerometer wear time and school travel method. Analyses were conducted in 2012. RESULTS: Following adjustments for covariates, having a parent educated to university degree level was associated with more minutes of school (5.87 [95% CI 1.72, 10.04]) and after-school (6.04 [95% CI 0.08, 12.16]) sedentary time. Quartiles of area deprivation (most to least deprived) were positively associated with after-school (Q2: 4.30 [95% CI −6.09, 14.70]; Q3: 10.77 [95% CI 0.47, 21.06]; Q4: 12.74 [95% CI 2.65, 22.84]; P(trend) = 0.04) and weekend (Q2: 26.34 [95% CI 10.16, 42.53]; Q3: 33.28 [95% CI 16.92, 49.65]; Q4: 29.90 [95% CI 14.20, 45.60]; P(trend) = 0.002) sedentary time. Having a garden was associated with less sedentary time after-school (−14.39 [95% CI −25.14, -3.64]) and at weekends (−27.44 [95% CI −43.11, -11.78]). CONCLUSIONS: Associations between SEP and children’s sedentary-time varied by SEP indicator and time of day. This highlights the importance of measuring multiple indicators of SEP and examining context specific sedentary time in children in order to fully understand how SEP influences this behaviour. Further research should combine self-report and objective data to examine associations with specific sedentary behaviours in the contexts within which they occur, as well as total sedentary time

    Reflections on a 'virtual' practice development unit: changing practice through identity development

    Get PDF
    Aims. This paper draws together the personal thoughts and critical reflections of key people involved in the establishment of a ‘virtual’ practice development unit of clinical nurse specialists in the south of England. Background. This practice development unit is ‘virtual’ in that it is not constrained by physical or specialty boundaries. It became the first group of Trust-wide clinical nurse specialists to be accredited in the UK as a practice development unit in 2004. Design and methods. The local university was asked to facilitate the accreditation process via 11 two-hour audio-recorded learning sessions. Critical reflections from practice development unit members, leaders and university staff were written 12 months after successful accreditation, and the framework of their content analysed. Findings and discussion. Practice development was seen as a way for the clinical nurse specialists to realize their potential for improving patient care by transforming care practice in a collaborative, interprofessional and evolutionary manner. The practice development unit provided a means for these nurses to analyse their role and function within the Trust. Roberts’ identity development model for nursing serves as a useful theoretical underpinning for the reflections contained in this paper. Conclusions. These narratives provide another example of nurses making the effort to shape and contribute to patient care through organizational redesign. This group of nurses began to realize that the structure of the practice development unit process provided them with the means to analyse their role and function within the organization and, as they reflected on this structure, their behaviour began to change. Relevance to clinical practice. Evidence from these reflections supports the view that practice development unit participants have secured a positive and professional identity and are, therefore, better able to improve the patient experience

    "<i>I've made this my lifestyle now</i>":a prospective qualitative study of motivation for lifestyle change among people with newly diagnosed type two diabetes mellitus

    Get PDF
    Abstract Background Diagnosis with Type 2 Diabetes is an opportunity for individuals to change their physical activity and dietary behaviours. Diabetes treatment guidelines recommend theory-based, patient-centred care and advocate the provision of support for patient motivation but the motivational experiences of people newly diagnosed with diabetes have not been well studied. Framed in self-determination theory, this study aimed to qualitatively explore how this patient group articulate and experience different types of motivation when attempting lifestyle change. Methods A secondary analysis of semi-structured interview data collected with 30 (n female = 18, n male = 12) adults who had been newly diagnosed with type two diabetes and were participants in the Early ACTID trial was undertaken. Deductive directed content analysis was performed using NVivo V10 and researcher triangulation to identify and describe patient experiences and narratives that reflected the motivation types outlined in self-determination theory and if/how these changed over time. Results The findings revealed the diversity in motivation quality both between and within individuals over time and that patients with newly-diagnosed diabetes have multifaceted often competing motivations for lifestyle behaviour change. Applying self-determination theory, we identified that many participants reported relatively dominant controlled motivation to comply with lifestyle recommendations, avoid their non-compliance being “found out” or supress guilt following lapses in behaviour change attempts. Such narratives were accompanied by experiences of frustrating slow behaviour change progress. More autonomous motivation was expressed as something often achieved over time and reflected goals to improve health, quality of life or family time. Motivational internalisation was evident and some participants had integrated their behaviour change to a new way of life which they found resilient to common barriers. Conclusions Motivation for lifestyle change following diagnosis with type two diabetes is complex and can be relatively low in self-determination. To achieve the patient empowerment aspirations of current national health care plans, intervention developers, and clinicians would do well to consider the quality not just quantity of their patients’ motivation. Trial registration ISRCTN ISRCTN92162869. Retrospectively registere

    Looking Into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows

    Get PDF
    We report on a complete set of early optical afterglows of gamma-ray bursts (GRBs) obtained with the ROTSE-III telescope network from March 2005 through June 2007. This set is comprised of 12 afterglows with early optical and Swift/XRT observations, with a median ROTSE-III response time of 45 s after the start of gamma-ray emission (8 s after the GCN notice time). These afterglows span four orders of magnitude in optical luminosity, and the contemporaneous X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray flares, the broadband synchrotron spectra show that the optical and X-ray emission originate in a common region, consistent with predictions of the external forward shock in the fireball model. However, the fireball model is inadequate to predict the temporal decay indices of the early afterglows, even after accounting for possible long-duration continuous energy injection. We find that the optical afterglow is a clean tracer of the forward shock, and we use the peak time of the forward shock to estimate the initial bulk Lorentz factor of the GRB outflow, and find 100<Gamma_0<1000, consistent with expectations.Comment: 31 pages, 5 figures, submitted to Ap
    • 

    corecore