1,627 research outputs found
Manipulating mesoscopic multipartite entanglement with atom-light interfaces
Entanglement between two macroscopic atomic ensembles induced by measurement
on an ancillary light system has proven to be a powerful method for engineering
quantum memories and quantum state transfer. Here we investigate the
feasibility of such methods for generation, manipulation and detection of
genuine multipartite entanglement between mesoscopic atomic ensembles. Our
results extend in a non trivial way the EPR entanglement between two
macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin,
and E. Polzik, Nature {\bf 413}, 400 (2001)]. We find that under realistic
conditions, a second orthogonal light pulse interacting with the atomic
samples, can modify and even reverse the entangling action of the first one
leaving the samples in a separable state.Comment: 8 pages, 6 figure
Pretargeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malignant glioma patients: A pilot study
In a previous study we applied a three-step avidin–biotin pretargeting approach to target 90Y-biotin to the tumour in patients with recurrent high grade glioma. The encouraging results obtained in this phase I–II study prompted us to apply the same approach in an adjuvant setting, to evaluate (i) time to relapse and (ii) overall survival. We enrolled 37 high grade glioma patients, 17 with grade III glioma and 20 with glioblastoma, in a controlled open non-randomized study. All patients received surgery and radiotherapy and were disease-free by neuroradiological examinations. Nineteen patients (treated) received adjuvant treatment with radioimmunotherapy. In the treated glioblastoma patients, median disease-free interval was 28 months (range=9–59); median survival was 33.5 months and one patient is still without evidence of disease. All 12 control glioblastoma patients died after a median survival from diagnosis of 8 months. In the treated grade III glioma patients median disease-free interval was 56 months (range=15–60) and survival cannot be calculated as only two, within this group, died. Three-step radioimmunotherapy promises to have an important role as adjuvant treatment in high grade gliomas, particularly in glioblastoma where it impedes progression, prolonging time to relapse and overall survival. A further randomized trial is justified
A study on the optimal aircraft location for human organ transportation activities
Abstract The donation-transplant network's complexity lies in the need to reconcile standardized processes and high levels of urgency and uncertainty due to organs' perishability and location. Both punctuality and reliability of air transportation service are crucial to ensure the safe outcome of the transplant. To this scope, an Integer Linear Programming (ILP) model is here proposed to determine the optimal distribution of aircraft in a given set of hubs and under the demand extracted from the Italian transplant database. This is an application of uncapacitated facility location problems, where aircraft are facilities to be located and organ transportation requests represent the demand. Two scenarios (two hubs versus three hubs) are tested under the performance point of view and over different time periods to assess the influence of variations in demand pattern and time period length on the solution
Spin-driven spatial symmetry breaking of spinor condensates in a double-well
The properties of an F=1 spinor Bose-Einstein condensate trapped in a
double-well potential are discussed using both a mean-field two-mode approach
and a simplified two-site Bose-Hubbard Hamiltonian. We focus in the region of
phase space in which spin effects lead to a symmetry breaking of the system,
favoring the spatial localization of the condensate in one well. To model this
transition we derive, using perturbation theory, an effective Hamiltonian that
describes N/2 spin singlets confined in a double-well potential.Comment: 12 pages, 5 figure
- …