9,577 research outputs found
Squeezed correlations of strange particle-antiparticles
Squeezed correlations of hadron-antihadron pairs are predicted to appear if
their masses are modified in the hot and dense medium formed in high energy
heavy ion collisions. If discovered experimentally, they would be an
unequivocal evidence of in-medium mass shift found by means of hadronic probes.
We discuss a method proposed to search for this novel type of correlation,
illustrating it by means of D_s-mesons with in-medium shifted masses. These
particles are expected to be more easily detected and identified in future
upgrades at RHIC.Comment: 6 pages, 3 figures with parts a) and b), SQM 2009 contribution; added
acknowledgmen
Testing the Resolving Power of 2-D K^+ K^+ Interferometry
Adopting a procedure previously proposed to quantitatively study
two-dimensional pion interferometry, an equivalent 2-D chi^2 analysis was
performed to test the resolving power of that method when applied to less
favorable conditions, i.e., if no significant contribution from long lived
resonances is expected, as in kaon interferometry. For that purpose, use is
made of the preliminary E859 K^+ K^+ interferometry data from Si+Au collisions
at 14.6 AGeV/c. As expected, less sensitivity is achieved in the present case,
although it still is possible to distinguish two distinct decoupling
geometries. The present analysis seems to favor scenarios with no resonance
formation at the AGS energy range, if the preliminary K^+ K^+ data are
confirmed. The possible compatibility of data with zero decoupling proper time
interval, conjectured by the 3-D experimental analysis, is also investigated
and is ruled out when considering more realistic dynamical models with
expanding sources. These results, however, clearly evidence the important
influence of the time emission interval on the source effective transverse
dimensions. Furthermore, they strongly emphasize that the static Gaussian
parameterization, commonly used to fit data, cannot be trusted under more
realistic conditions, leading to distorted or even wrong interpretation of the
source parameters!Comment: 11 pages, RevTeX, 4 Postscript figures include
Texture Evolution During Isothermal, Isostrain, and Isobaric Loading of Polycrystalline Shape Memory NiTi
In situ neutron diffraction was used to provide insights into martensite variant microstructures during isothermal, isobaric, and isostrain loading in shape memory NiTi. The results show that variant microstructures were equivalent for the corresponding strain, and more importantly, the reversibility and equivalency were immediately evident in variant microstructures that were first formed isobarically but then reoriented to near random self-accommodated microstructures following isothermal deformation. Variant microstructures formed isothermally were not significantly affected by a subsequent thermal cycle under constant strain. In all loading cases considered, the resulting variant microstructure correlated with strain and did not correlate with stress. Based on the ability to select a variant microstructure for a given strain despite thermomechanical loading history, the results demonstrated here can be obtained by following any sequence of thermomechanical loading paths over multiple cycles. Thus, for training shape memory alloys (repeating thermomechanical cycling to obtain the desired variant microstructure), optimal paths can be selected so as to minimize the number of training cycles required, thereby increasing the overall stability and fatigue life of these alloys in actuator or medical applications
Quantum corrections for pion correlations involving resonance decays
A method is presented to include quantum corrections into the calculation of
two-pion correlations for the case where particles originate from resonance
decays. The technique uses classical information regarding the space-time
points at which resonances are created. By evaluating a simple thermal model,
the method is compared to semiclassical techniques that assume exponential
decaying resonances moving along classical trajectories. Significant
improvements are noted when the resonance widths are broad as compared to the
temperature.Comment: 9 pages, 4 figure
The role of CD44 and ERM proteins in expression and functionality of P-glycoprotein in breast cancer cells
© 2016 by the authors. Multidrug resistance (MDR) is often attributed to the over-expression of P-glycoprotein (P-gp), which prevents the accumulation of anticancer drugs within cells by virtue of its active drug efflux capacity. We have previously described the intercellular transfer of P-gp via extracellular vesicles (EVs) and proposed the involvement of a unique protein complex in regulating this process. In this paper, we investigate the role of these mediators in the regulation of P-gp functionality and hence the acquisition of MDR following cell to cell transfer. By sequentially silencing the FERM domain-binding proteins, Ezrin, Radixin and Moesin (ERM), as well as CD44, which we also report a selective packaging in breast cancer derived EVs, we have established a role for these proteins, in particular Radixin and CD44, in influencing the P-gp-mediated MDR in whole cells. We also report for the first time the role of ERM proteins in the vesicular transfer of functional P-gp. Specifically, we demonstrate that intercellular membrane insertion is dependent on Ezrin and Moesin, whilst P-gp functionality is governed by the integrity of all ERM proteins in the recipient cell. This study identifies these candidate proteins as potential new therapeutic targets in circumventing MDR clinically
Small size boundary effects on two-pion interferometry
The Bose-Einstein correlations of two identically charged pions are derived
when these particles, the most abundantly produced in relativistic heavy ion
collisions, are confined in finite volumes. Boundary effects on single pion
spectrum are also studied. Numerical results emphasize that conventional
formulation usually adopted to describe two-pion interferometry should not be
used when the source size is small, since this is the most sensitive case to
boundary effects. Specific examples are considered for better illustration.Comment: more discussion on Figure4 and diffuse boundar
Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications
Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications
Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials
A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings
A novel method to detect translation of membrane proteins following microvesicle intercellular transfer of nucleic acids
© 2016 The Authors. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved. Microvesicles (MVs) serve as vectors of nucleic-acid dissemination and are important mediators of intercellular communication. However, the functionality of packaged nucleic acids on recipient cells following transfer of MV cargo has not been clearly elucidated. This limitation is attributed to a lack of methodology available in assessing protein translation following homotypic intercellular transfer of nucleic acids. Using surface peptide shaving we have demonstrated that MVs derived from human leukaemic cells transfer functional P-glycoprotein transcripts, conferring drug-efflux capacity to recipient cells. We demonstrate expression of newly synthesized protein using Western blot. Furthermore, we show functionality of translated P-gp protein in recipient cells using Calcein-AM dye exclusion assays on flow cytometry. Newly synthesized 170 kDa P-gp was detected in recipient cells after coculture with shaven MVs and these proteins were functional, conferring drug efflux. This is the first demonstration of functionality of transferred nucleic acids between human homotypic cells as well as the translation of the cancer multidrug-resistance protein in recipient cells following intercellular transfer of its transcript. This study supports the significant role of MV's in the transfer of deleterious traits in cancer populations and describes a new paradigm in mechanisms governing the acquisition of traits in cancer cell populations
TLR3 engagement induces IRF-3-dependent apoptosis in androgen-sensitive prostate cancer cells and inhibits tumour growth in vivo
Toll-like receptors (TLRs) are a family of highly conserved transmembrane proteins expressed in epithelial and immune cells that recognize pathogen associated molecular patterns. Besides their role in immune response against infections, numerous studies have shown an important role of different TLRs in cancer, indicating these receptors as potential targets for cancer therapy. We previously demonstrated that the activation of TLR3 by the synthetic double-stranded RNA analogue poly I:C induces apoptosis of androgen-sensitive prostate cancer (PCa) LNCaP cells and, much less efficiently, of the more aggressive PC3 cell line. Therefore, in this study we selected LNCaP cells to investigate the mechanism of TLR3-mediated apoptosis and the in vivo efficacy of poly I:C-based therapy. We show that interferon regulatory factor-3 (IRF-3) signalling plays an essential role in TLR3-mediated apoptosis in LNCaP cells through the activation of the intrinsic and extrinsic apoptotic pathways. Interestingly, hardly any apoptosis was induced by poly I:C in normal prostate epithelial cells RWPE-1. We also demonstrate for the first time the direct anticancer effect of poly I:C as a single therapeutic agent in a well-established human androgen-sensitive PCa xenograft model, by showing that tumour growth is highly impaired in poly I:C-treated immunodeficient mice. Immunohistochemical analysis of PCa xenografts highlights the antitumour role of poly I:C in vivo both on cancer cells and, indirectly, on endothelial cells. Notably, we show the presence of TLR3 and IRF-3 in both human normal and PCa clinical samples, potentially envisaging poly I:C-based therapy for PCa
- …
