59 research outputs found

    Sensitivity of human laryngeal squamous cell carcinoma Hep-2 to metrotexate chemoterapy

    No full text
    Aim: Methotrexate (MTX) is an antifolate agent that acts inhibiting purine and pyrimidine synthesis. The objective of the study was to evaluate the viability of Hep-2 human laryngeal cancer cells to the treatment with MTX chemotherapy in vitro. Methods: Cultured Hep-2 cells were treated with 0.25, 25.0 and 75 μM MTX for 24 h, and their viability was evaluated with Bcl-2-FITC antibody in flow cytometry. Results: The numbers of viable Hep-2 cells after 24 h treatment with 0.25, 25.0 and 75.0 uM MTX were 85.43%, 22.46% and 8.42%, respectively (p < 0.05). Therefore, MTX possesses a dose-dependent effect on viability of Hep-2 cells in vitro. Conclusion: The highest MTX concentration is associated with highest tumor cell sensitivity of human laryngeal cancer cells of Hep-2 line

    Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi

    Get PDF
    Human milk is essential for the initial development of newborns, as it provides all nutrients and vitamins, such as vitamin D, and represents a great source of commensal bacteria. Here we explore the microbiota network of colostrum and mature milk of Italian and Burundian mothers using the auto contractive map (AutoCM), a new methodology based on artificial neural network (ANN) architecture. We were able to demonstrate the microbiota of human milk to be a dynamic, and complex, ecosystem with different bacterial networks among different populations containing diverse microbial hubs and central nodes, which change during the transition from colostrum to mature milk. Furthermore, a greater abundance of anaerobic intestinal bacteria in mature milk compared with colostrum samples has been observed. The association of complex mathematic systems such as ANN and AutoCM adopted to metagenomics analysis represents an innovative approach to investigate in detail specific bacterial interactions in biological samples

    Age at symptom onset and death and disease duration in genetic frontotemporal dementia : an international retrospective cohort study

    Get PDF
    Background: Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. Methods: In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. Findings: Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49\ub75 years (SD 10\ub70; onset) and 58\ub75 years (11\ub73; death) in the MAPT group, 58\ub72 years (9\ub78; onset) and 65\ub73 years (10\ub79; death) in the C9orf72 group, and 61\ub73 years (8\ub78; onset) and 68\ub78 years (9\ub77; death) in the GRN group. Mean disease duration was 6\ub74 years (SD 4\ub79) in the C9orf72 group, 7\ub71 years (3\ub79) in the GRN group, and 9\ub73 years (6\ub74) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0\ub745 between individual and parental age at onset, r=0\ub763 between individual and mean family age at onset, r=0\ub758 between individual and parental age at death, and r=0\ub769 between individual and mean family age at death) than in either the C9orf72 group (r=0\ub732 individual and parental age at onset, r=0\ub736 individual and mean family age at onset, r=0\ub738 individual and parental age at death, and r=0\ub740 individual and mean family age at death) or the GRN group (r=0\ub722 individual and parental age at onset, r=0\ub718 individual and mean family age at onset, r=0\ub722 individual and parental age at death, and r=0\ub732 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35\u201362, for age at onset; 61%, 47\u201373, for age at death), and even more by family membership (66%, 56\u201375, for age at onset; 74%, 65\u201382, for age at death). In the GRN group, only 2% (0\u201310) of the variability of age at onset and 9% (3\u201321) of that of age of death was explained by the specific mutation, whereas 14% (9\u201322) of the variability of age at onset and 20% (12\u201330) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11\u201326) of the variability of age at onset and 19% (12\u201329) of that of age at death. Interpretation: Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. Funding: UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Hemorrhagic Transformation in Patients With Acute Ischemic Stroke and Atrial Fibrillation: Time to Initiation of Oral Anticoagulant Therapy and Outcomes.

    Get PDF
    Background In patients with acute ischemic stroke and atrial fibrillation, early anticoagulation prevents ischemic recurrence but with the risk of hemorrhagic transformation ( HT ). The aims of this study were to evaluate in consecutive patients with acute stroke and atrial fibrillation (1) the incidence of early HT, (2) the time to initiation of anticoagulation in patients with HT , (3) the association of HT with ischemic recurrences, and (4) the association of HT with clinical outcome at 90 days. Methods and Results HT was diagnosed by a second brain computed tomographic scan performed 24 to 72 hours after stroke onset. The incidence of ischemic recurrences as well as mortality or disability (modified Rankin Scale scores &gt;2) were evaluated at 90 days. Ischemic recurrences were the composite of ischemic stroke, transient ischemic attack, or systemic embolism. Among the 2183 patients included in the study, 241 (11.0%) had HT . Patients with and without HT initiated anticoagulant therapy after a mean 23.3 and 11.6 days, respectively, from index stroke. At 90 days, 4.6% (95% confidence interval, 2.3-8.0) of the patients with HT had ischemic recurrences compared with 4.9% (95% confidence interval, 4.0-6.0) of those without HT ; 53.1% of patients with  HT were deceased or disabled compared with 35.8% of those without HT . On multivariable analysis, HT was associated with mortality or disability (odds ratio, 1.71; 95% confidence interval, 1.24-2.35). Conclusions In patients with HT , anticoagulation was initiated about 12 days later than patients without HT . This delay was not associated with increased detection of ischemic recurrence. HT was associated with increased mortality or disability

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    Background Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. Methods We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. Results We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67–82]), than encephalopathy (54% [42–65]). Intensive care use was high (38% [35–41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27–32]. The hazard of death was comparatively lower for patients in the WHO European region. Interpretation Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine
    corecore