549 research outputs found

    Percutaneous treatment of native aortic coarctation in adults

    Get PDF
    Aortic coarctation is a common congenital cardiac defect, which can be diagnosed over a wide range of ages and with varying degrees of severity. We present two cases of patients diagnosed with aortic coarctation in adulthood. Both patients were treated by an endovascular approach. These cases demonstrate the variety of indications in which percutaneous treatment is an excellent alternative for surgical treatment in adult native coarctation patients

    THE IMPACT OF DIETARY PROTEIN OR AMINO ACID SUPPLEMENTATION ON MUSCLE MASS AND STRENGTH IN ELDERLY PEOPLE: INDIVIDUAL PARTICIPANT DATA AND META-ANALYSIS OF RCT’S

    Get PDF
    Objectives Increasing protein or amino acid intake has been promoted as a promising strategy to increase muscle mass and strength in elderly people, however, long-term intervention studies show inconsistent findings. Therefore, we aim to determine the impact of protein or amino acid supplementation compared to placebo on muscle mass and strength in older adults by combining the results from published trials in a metaanalysis and pooled individual participant data analysis. Design We searched Medline and Cochrane databases and performed a meta-analysis on eight available trials on the effect of protein or amino acid supplementation on muscle mass and strength in older adults. Furthermore, we pooled individual data of six of these randomized double-blind placebo-controlled trials. The main outcomes were change in lean body mass and change in muscle strength for both the meta-analysis and the pooled analysis. Results The meta-analysis of eight studies (n=557) showed no significant positive effects of protein or amino acid supplementation on lean body mass (mean difference: 0.014 kg: 95% CI -0.152; 0.18), leg press strength (mean difference: 2.26 kg: 95% CI -0.56; 5.08), leg extension strength (mean difference: 0.75 kg: 95% CI: -1.96, 3.47) or handgrip strength (mean difference: -0.002 kg: 95% CI -0.182; 0.179). Likewise, the pooled analysis showed no significant difference between protein and placebo treatment on lean body mass (n=412: p=0.78), leg press strength (n=121: p=0.50), leg extension strength (n=121: p=0.16) and handgrip strength (n=318: p=0.37). Conclusions There is currently no evidence to suggest that protein or amino acid supplementation without concomitant nutritional or exercise interventions increases muscle mass or strength in predominantly healthy elderly people

    Museum activities in dementia care: using visual analog scales to measure subjective wellbeing

    Get PDF
    Introduction: Previous research has shown that people with dementia and caregivers derive wellbeing-related benefits from viewing art in a group, and that facilitated museum object handling is effective in increasing subjective wellbeing for people with a range of health conditions. The present study quantitatively compared the impact of two museum-based activities and a social activity on the subjective wellbeing of people with dementia and their caregivers. Methods: A quasi-experimental crossover design was used. People with early to middle stage dementia and caregivers (N = 66) participated in museum object handling, a refreshment break and art-viewing in small groups. Visual analogue scales were used to rate subjective wellbeing pre and post each activity. Results: Mixed-design ANOVAs indicated wellbeing significantly increased during the session, irrespective of the order in which the activities were presented. Wellbeing significantly increased from object-handling and art-viewing for those with dementia and caregivers across pooled orders, but did not in the social activity of a refreshment break. An end-of-intervention questionnaire indicated that experiences of the session were positive. Conclusion: Results provide a rationale for considering museum activities as part of a broader psychosocial, relational approach to dementia care and support the use of easy to administer visual analogue scales as a quantitative outcome measure. Further partnership working is also supported between museums and healthcare professionals in the development of non-clinical, community-based programmes for this population

    Protein-enriched meal replacements do not adversely affect liver, kidney or bone density: an outpatient randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is concern that recommending protein-enriched meal replacements as part of a weight management program could lead to changes in biomarkers of liver or renal function and reductions in bone density. This study was designed as a placebo-controlled clinical trial utilizing two isocaloric meal plans utilizing either a high protein-enriched (HP) or a standard protein (SP) meal replacement in an outpatient weight loss program.</p> <p>Subjects/methods</p> <p>100 obese men and women over 30 years of age with a body mass index (BMI) between 27 to 40 kg/m<sup>2 </sup>were randomized to one of two isocaloric weight loss meal plans 1). HP group: providing 2.2 g protein/kg of lean body mass (LBM)/day or 2). SP group: providing 1.1 g protein/kg LBM/day. Meal replacement (MR) was used twice daily (one meal, one snack) for 3 months and then once a day for 9 months. Body weight, lipid profiles, liver function, renal function and bone density were measured at baseline and 12 months.</p> <p>Results</p> <p>Seventy subjects completed the study. Both groups lost weight (HP -4.29 ± 5.90 kg vs. SP -4.66 ± 6.91 kg, p < 0.01) and there was no difference in weight loss observed between the groups at one year. There was no significant change noted in liver function [AST (HP -2.07 ± 10.32 U/L, p = 0.28; SP 0.27 ± 6.67 U/L, p = 0.820), ALT (HP -1.03 ± 10.08 U/L, p = 0.34; SP -2.6 ± 12.51 U/L, p = 0.24), bilirubin (HP 0.007 ± 0.33, U/L, p = 0.91; SP 0.07 ± 0.24 U/L, p = 0.120), alkaline phosphatase (HP 2.00 ± 9.07 U/L, p = 0.240; SP -2.12 ± 11.01 U/L, p = 0.280)], renal function [serum creatinine (HP 0.31 ± 1.89 mg/dL, p = 0.380; SP -0.05 ± 0.15 mg/dL, p = 0.060), urea nitrogen (HP 1.33 ± 4.68 mg/dL, p = 0.130; SP -0.24 ± 3.03 mg/dL, p = 0.650), 24 hour urine creatinine clearance (HP -0.02 ± 0.16 mL/min, p = 0.480; SP 1.18 ± 7.53 mL/min, p = 0.400), and calcium excretion (HP -0.41 ± 9.48 mg/24 hours, p = 0.830; SP -0.007 ± 6.76 mg/24 hours, p = 0.990)] or in bone mineral density by DEXA (HP 0.04 ± 0.19 g/cm<sup>2</sup>, p = 0.210; SP -0.03 ± 0.17 g/cm<sup>2</sup>, p = 0.320) in either group over one year.</p> <p>Conclusions</p> <p>These studies demonstrate that protein-enriched meals replacements as compared to standard meal replacements recommended for weight management do not have adverse effects on routine measures of liver function, renal function or bone density at one year. Clinicaltrial.gov: NCT01030354.</p

    Nutrient Administration and Resistance Training

    Get PDF
    Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1-3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1,3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis

    Aging Skin: Nourishing from the Inside Out, Effects of Good Versus Poor Nitrogen Intake on Skin Health and Healing

    Get PDF
    Skin is the outermost defense organ which protects us from the environment, constituting around 8 % of an adult’s body weight. Healthy skin contains one-eighth of the body’s total proteins. The balance of turnover and synthesis of skin proteins is primarily dependent on the availability of sufficient nitrogen-containing substrates, namely, amino acids, essential for protein metabolism in any other tissue and body organs. The turnover of skin proteins has been shown to be rapid, and the mobilization of amino acids at the expense of skin proteins is relevant in experimental models of protein malnutrition. As a result, alterations in nutritional status should be suspected, diagnosed, and eventually treated for any skin lesions. Protein malnutrition has a dramatic prevalence in patients aged >70 or more, independent of the reason for hospitalization. The quality of nutrition and content of essential amino acids are strictly connected to skin health and integrity of its protein components. Collagen fiber deposition is highly and rapidly influenced by alterations in the essential to nonessential amino acid ratios. The most relevant nutritional factor of skin health is the prevalence of essential amino acids

    Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies

    Get PDF
    The purpose of present review is to describe the effect of leucine supplementation on skeletal muscle proteolysis suppression in both in vivo and in vitro studies. Most studies, using in vitro methodology, incubated skeletal muscles with leucine with different doses and the results suggests that there is a dose-dependent effect. The same responses can be observed in in vivo studies. Importantly, the leucine effects on skeletal muscle protein synthesis are not always connected to the inhibition of skeletal muscle proteolysis. As a matter of fact, high doses of leucine incubation can promote suppression of muscle proteolysis without additional effects on protein synthesis, and low leucine doses improve skeletal muscle protein ynthesis but have no effect on skeletal muscle proteolysis. These research findings may have an important clinical relevancy, because muscle loss in atrophic states would be reversed by specific leucine supplementation doses. Additionally, it has been clearly demonstrated that leucine administration suppresses skeletal muscle proteolysis in various catabolic states. Thus, if protein metabolism changes during different atrophic conditions, it is not surprising that the leucine dose-effect relationship must also change, according to atrophy or pathological state and catabolism magnitude. In conclusion, leucine has a potential role on attenuate skeletal muscle proteolysis. Future studies will help to sharpen the leucine efficacy on skeletal muscle protein degradation during several atrophic states

    Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges

    Get PDF
    Lupin is an undervalued legume despite its high protein and dietary fiber content and potential health benefits. This review focuses on the nutritional value, health benefits, and technological effects of incorporating lupin flour into wheat-based bread. Results of clinical studies suggest that consuming lupin compared to wheat bread and other baked products reduce chronic disease risk markers; possibly due to increased protein and dietary fiber and bioactive compounds. However, lupin protein allergy has also been recorded. Bread quality has been improved when 10% lupin flour is substituted for refined wheat flour; possibly due to lupin-wheat protein cross-linking assisting bread volume and the high water-binding capacity (WBC) of lupin fiber delaying staling. Above 10% substitution appears to reduce bread quality due to lupin proteins low elasticity and the high WBC of its dietary fiber interrupting gluten network development. Gaps in understanding of the role of lupin flour in bread quality include the optimal formulation and processing conditions to maximize lupin incorporation, role of protein cross-linking, antistaling functionality, and bioactivity of its γ-conglutin protein
    corecore