151 research outputs found

    Chaotic dynamics around astrophysical objects with nonisotropic stresses

    Full text link
    The existence of chaotic behavior for the geodesics of the test particles orbiting compact objects is a subject of much current research. Some years ago, Gu\'eron and Letelier [Phys. Rev. E \textbf{66}, 046611 (2002)] reported the existence of chaotic behavior for the geodesics of the test particles orbiting compact objects like black holes induced by specific values of the quadrupolar deformation of the source using as models the Erez--Rosen solution and the Kerr black hole deformed by an internal multipole term. In this work, we are interesting in the study of the dynamic behavior of geodesics around astrophysical objects with intrinsic quadrupolar deformation or nonisotropic stresses, which induces nonvanishing quadrupolar deformation for the nonrotating limit. For our purpose, we use the Tomimatsu-Sato spacetime [Phys. Rev. Lett. \textbf{29} 1344 (1972)] and its arbitrary deformed generalization obtained as the particular vacuum case of the five parametric solution of Manko et al [Phys. Rev. D 62, 044048 (2000)], characterizing the geodesic dynamics throughout the Poincar\'e sections method. In contrast to the results by Gu\'eron and Letelier we find chaotic motion for oblate deformations instead of prolate deformations. It opens the possibility that the particles forming the accretion disk around a large variety of different astrophysical bodies (nonprolate, e.g., neutron stars) could exhibit chaotic dynamics. We also conjecture that the existence of an arbitrary deformation parameter is necessary for the existence of chaotic dynamics.Comment: 7 pages, 5 figure

    Regular and Chaotic Motion in General Relativity: The Case of a Massive Magnetic Dipole

    Full text link
    Circular motion of particles, dust grains and fluids in the vicinity of compact objects has been investigated as a model for accretion of gaseous and dusty environment. Here we further discuss, within the framework of general relativity, figures of equilibrium of matter under the influence of combined gravitational and large-scale magnetic fields, assuming that the accreted material acquires a small electric charge due to interplay of plasma processes and photoionization. In particular, we employ an exact solution describing the massive magnetic dipole and we identify the regions of stable motion. We also investigate situations when the particle dynamics exhibits the onset of chaos. In order to characterize the measure of chaoticness we employ techniques of Poincar\'e surfaces of section and of recurrence plots.Comment: 11 pages, 6 figures, published in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" (25. - 29. 6. 2012, Prague

    Realistic Exact Solution for the Exterior Field of a Rotating Neutron Star

    Get PDF
    A new six-parametric, axisymmetric and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass--quadrupole moment, current octupole moment, electric charge and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti & Stergioulas (Mon. Not. Roy. Astron. Soc. 350, 1416 (2004)), imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from Berti & Stergioulas numerical solutions, Kerr solution (Phys. Rev. Lett. 11, 237 (1963)), Hartle & Thorne solution (Ap. J. 153, 807, (1968)), an analytic series expansion derived by Shibata & Sasaki (Phys. Rev. D. 58 104011 (1998)) and, our exact solution. We found that radii of ISCOs from our solution fits better than others with realistic numerical interior solutions.Comment: 13 pages, 13 figures, LaTeX documen

    Mathematical Aspects of the Periodic Law

    Full text link
    We review different studies of the Periodic Law and the set of chemical elements from a mathematical point of view. This discussion covers the first attempts made in the 19th century up to the present day. Mathematics employed to study the periodic system includes number theory, information theory, order theory, set theory and topology. Each theory used shows that it is possible to provide the Periodic Law with a mathematical structure. We also show that it is possible to study the chemical elements taking advantage of their phenomenological properties, and that it is not always necessary to reduce the concept of chemical elements to the quantum atomic concept to be able to find interpretations for the Periodic Law. Finally, a connection is noted between the lengths of the periods of the Periodic Law and the philosophical Pythagorean doctrine.Comment: 20 pages, PDF fil

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

    Get PDF
    Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte- dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post- transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes

    Modern venomics – Current insights, novel methods and future perspectives in biological and applied animal venom research

    Get PDF
    Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit

    The Role of bZIP Transcription Factors in Green Plant Evolution: Adaptive Features Emerging from Four Founder Genes

    Get PDF
    BACKGROUND: Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments
    corecore