10 research outputs found

    Fabric-Integrated, Ionic Liquid-Based Supercapacitor as a Tunable and Flexible Power Source

    Get PDF
    With the introduction of flexible and wearable electronic technologies such as displays, antenna’s, etc., there has been an increased need for integrable, easily scalable, and safe electric power sources. Advances in flexible lithium-ion batteries have been recently reported, however they may still suffer from potential thermal runaways. In this chapter we review the progress in the topic of wearable energy storage devices. These devices have taken the form of both sheets and fibers entirely made of active material. We also discuss the advantages and drawbacks of each forms. Finally, we present our own work revealing a simplistic way to integrate working carbon electrode materials into suitable textile and to functionalize the obtained flexible structure with ionic liquid thus creating fabric supercapacitors. These devices can then be connected easily in series (9 V) or in parallel (high current), depending on the current or voltage requirements. The area of the electrodes can also be tuned to sustain higher capacitances. We report an energy density of 48 Wh/kg for a functional device at 3 V working window, which reveals no losses in energy density after 10,000 bending cycles

    Fiber Supercapacitors Based on Carbon Nanotube-PANI Composites

    Get PDF
    Flexible and wearable electronic devices are of a high academic and industrial interest. In order to power these devices, there is a need for compatible energy storage units that can exhibit similar mechanical flexibility. Fiber-based devices have thus become increasingly popular since their light-weight, and flexible structure can be easily integrated into textiles. Supercapacitors have garnered a lot of attention due to their excellent cycling durability, fast charge times and superior power density. The primary challenge, however, with electric double layer capacitors (EDLCs), which are part of the supercapacitor family, is that their energy densities are significantly lower compared to those of batteries. Pseudocapacitors, on the other hand, can be designed and created with large energy densities and other outstanding properties typical for supercapacitors. This chapter discusses the fabrication and testing of supercapacitors based on carbon nanotube-polyaniline (PANI) composite fibers. These flexible and light-weight devices are assembled using different electrolytes for comparison. The created in this work PANI-CNT composite devices attain an energy density of 6.16 Wh/kg at a power density of 630 W/kg and retained a capacitance of 88% over 1000 charge-discharge cycles

    Carbon Nanotube-Based Composite Fibers for Supercapacitor Application

    No full text

    Chlorosulfonic Acid Stretched Carbon Nanotube Sheet for Flexible and Low-Voltage Heating Applications

    No full text
    The carbon nanotube (CNT) is celebrated for its electrothermal property, which indicates the capability of a material to transform electrical energy into heat due to the Joule effect. The CNT nanostructure itself, as a one-dimensional material, limits the electron conduction path, thereby creating a unique heating phenomenon. In this work, we explore the possible correlation between CNT alignment in sheets and heating performance. The alignment of carbon nanotubes is induced by immersion and stretching in chlorosulfonic acid (CSA) solution. The developed CSA-stretched CNT sheet demonstrated excellent heating performance with a fast response rate of 6.5 °C/s and reached 180 °C in less than 30 s under a low voltage of 2.5 V. The heating profile of the stretched CNT sheet remained stable after bending and twisting movements, making it a suitable heating material for wearable devices, heatable smart windows, and in de-icing or defogging applications. The specific strength and specific conductance of the CSA-stretched CNT sheet also increased five- and two-fold, respectively, in comparison to the pristine CNT sheet

    Nitrogen-Doped Flower-Like Hybrid Structure Based on Three-Dimensional Graphene

    No full text
    A new flower-like hybrid structure consisting of nitrogen-doped 3-dimensional (3D) graphene and vertically aligned graphene has been synthesized using a combination of low-pressure chemical vapor deposition (LPCVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques. Active nitrogen (N) species were found to be essential for the growth of the flower-like morphology. N-doping was responsible for enhanced electrical conductivity and wettability of the obtained nano-carbon hybrid structure. Based on the conducted studies a growth mechanism has been proposed. The high specific surface area, low resistance to charge transfer and enhanced specific capacitance of this nitrogen-doped hybrid structure, makes it an excellent candidate material for supercapacitors

    Plasma-Enhanced Carbon Nanotube Fiber Cathode for Li-S Batteries

    No full text
    Fiber-shaped batteries have attracted much interest in the last few years. However, a major challenge for this type of battery is their relatively low energy density. Here, we present a freestanding, flexible CNT fiber with high electrical conductivity and applied oxygen plasma-functionalization, which was successfully employed to serve as an effective cathode for Li-S batteries. The electrochemical results obtained from the conducted battery tests showed a decent rate capability and cyclic stability. The cathode delivered a capacity of 1019 mAh g−1 at 0.1 C. It accommodated a high sulfur loading of 73% and maintained 47% of the initial capacity after 300 cycles. The demonstrated performance of the fiber cathode provides new insights for the designing and fabrication of high energy density fiber-shaped batteries

    Asymmetric Fiber Supercapacitors Based on a FeC2O4/FeOOH-CNT Hybrid Material

    No full text
    The development of new flexible and lightweight electronics has increased the demand for compatible energy storage devices to power them. Carbon nanotube (CNT) fibers have long been known for their ability to be assembled into yarns, offering their integration into electronic devices. They are hindered, however, by their low intrinsic energy storage properties. Herein, we report a novel composite yarn, synthesized through solvothermal processes, that attained energy densities in the range between 0.17 µWh/cm2 and 3.06 µWh/cm2, and power densities between 0.26 mW/cm2 and 0.97 mW/cm2, when assembled in a supercapacitor with a PVDF-EMIMBF4 electrolyte. The created unique composition of iron oxalate + iron hydroxide + CNT as an anode worked well in synergy with the much-studied PANI + CNT cathode, resulting in a highly stable yarn energy storage device that maintained 96.76% of its energy density after 4000 cycles. This device showed no observable change in performance under stress/bend tests which makes it a viable candidate for powering wearable electronics

    A Simple Two-Step Process for Producing Strong and Aligned Carbon Nanotube-Polymer Composites

    No full text
    In this paper, we present the results of a study related to fabrication of polymer-aligned carbon nanotube (CNT) composites made with different thermoplastic polymers. These composites have been manufactured by employing a simple two-step process using the internal resistive heating approach. The resulting composites have shown improved tensile strength, load, and elastic modulus compared to pristine CNT sheets. Poly (methyl methacrylate) (PMMA)-CNT, UltemTM-CNT and thermoplastic polyurethane (TPU)-CNT composites showed an increase in tensile strength by as much as 41%, 77% and 86% respectively over pristine CNT sheets. The improvement in tensile strength is the result of a good adhesion achieved between the aligned CNTs and polymer as observed with transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
    corecore