171 research outputs found

    Optimal consumption, investment and housing with means-tested public pension in retirement

    Full text link
    © 2017 Elsevier B.V. In this paper, we develop an expected utility model for retirement behaviour in the decumulation phase of Australian retirees with sequential family status subject to consumption, housing, investment, bequest, and government-provided means-tested Age Pension. We account for mortality risk and risky investment assets, and we introduce a “health” proxy to capture the decreasing level of consumption for older retirees. Then, we find the optimal housing at retirement, the optimal consumption and optimal risky asset allocation depending on age and wealth. The model is solved numerically as a stochastic control problem, and it is calibrated using the maximum likelihood method with empirical data of consumption and housing from the Australian Bureau of Statistics 2009–2010 Survey. The model fits the characteristics of the data well to explain the behaviour of Australian retirees. The key findings are as follows. First, the optimal policy is highly sensitive to means-tested Age Pension early in retirement, but this sensitivity fades with age. Second, the allocation to risky assets shows a complex relationship with the means-tested Age Pension. As a general rule, when wealth decreases, the proportion allocated to risky assets increases, because the Age Pension works as a buffer against investment losses. Third, couples can be more aggressive with risky allocations owing to their longer life expectancy compared with singles

    Optimal Exercise Strategies for Operational Risk Insurance via Multiple Stopping Times

    Get PDF
    In this paper we demonstrate how to develop analytic closed form solutions to optimal multiple stopping time problems arising in the setting in which the value function acts on a compound process that is modified by the actions taken at the stopping times. This class of problem is particularly relevant in insurance and risk management settings and we demonstrate this on an important application domain based on insurance strategies in Operational Risk management for financial institutions. In this area of risk management the most prevalent class of loss process models is the Loss Distribution Approach (LDA) framework which involves modelling annual losses via a compound process. Given an LDA model framework, we consider Operational Risk insurance products that mitigate the risk for such loss processes and may reduce capital requirements. In particular, we consider insurance products that grant the policy holder the right to insure k of its annual Operational losses in a horizon of T years. We consider two insurance product structures and two general model settings, the first are families of relevant LDA loss models that we can obtain closed form optimal stopping rules for under each generic insurance mitigation structure and then secondly classes of LDA models for which we can develop closed form approximations of the optimal stopping rules. In particular, for losses following a compound Poisson process with jump size given by an Inverse-Gaussian distribution and two generic types of insurance mitigation, we are able to derive analytic expressions for the loss process modified by the insurance application, as well as closed form solutions for the optimal multiple stopping rules in discrete time (annually). When the combination of insurance mitigation and jump size distribution does not lead to tractable stopping rules we develop a principled class of closed form approximations to the optimal decision rule. These approximations are developed based on a class of orthogonal Askey polynomial series basis expansion representations of the annual loss compound process distribution and functions of this annual loss

    Quantum and classical criticality in a dimerized quantum antiferromagnet

    Get PDF
    A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal ("Higgs") mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.Comment: 6 pages, 4 figures. Original version, published version available from Nature Physics websit

    Synthesis and characterization of hybrid nanostructures

    Get PDF
    There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal-semiconductor heterojunctions formed by the growth of Au, Pt, or other binary catalytic metal systems on metal (Cd, Pb, Cu)-chalcogenide nanostructures. We show the ability to grow the metal on various shapes (spherical, rods, hexagonal prisms, and wires). Furthermore, manipulating the composition of the metal nanoparticles is also shown, where PtNi and PtCo alloys are our main focus. The magnetic and electrical properties of the developed hybrid nanostructures are shown

    A Kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury

    Get PDF
    © 2020, The Author(s). Renal tubular epithelial cells (RTECs) perform the essential function of maintaining the constancy of body fluid composition and volume. Toxic, inflammatory, or hypoxic-insults to RTECs can cause systemic fluid imbalance, electrolyte abnormalities and metabolic waste accumulation- manifesting as acute kidney injury (AKI), a common disorder associated with adverse long-term sequelae and high mortality. Here we report the results of a kinome-wide RNAi screen for cellular pathways involved in AKI-associated RTEC-dysfunction and cell death. Our screen and validation studies reveal an essential role of Cdkl5-kinase in RTEC cell death. In mouse models, genetic or pharmacological Cdkl5 inhibition mitigates nephrotoxic and ischemia-associated AKI. We propose that Cdkl5 is a stress-responsive kinase that promotes renal injury in part through phosphorylation-dependent suppression of pro-survival transcription regulator Sox9. These findings reveal a surprising non-neuronal function of Cdkl5, identify a pathogenic Cdkl5-Sox9 axis in epithelial cell-death, and support CDKL5 antagonism as a therapeutic approach for AKI

    Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at √s = 7 TeV

    Get PDF
    The differential cross-section as a function of rapidity has been measured for the exclusive production of J/ψ and ψ(2S) mesons in proton–proton collisions at √s = 7 TeV, using data collected by the LHCb experiment, corresponding to an integrated luminosity of 930 pb−1. The cross-sections times branching fractions to two muons having pseudorapidities between 2.0 and 4.5 are measured to be where the first uncertainty is statistical and the second is systematic. The measurements agree with next-to-leading order QCD predictions as well as with models that include saturation effects
    • 

    corecore