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Abstract In this paper we demonstrate how to develop analytic closed form solutions to
optimal multiple stopping time problems arising in the setting in which the value function
acts on a compound process that is modified by the actions taken at the stopping times. This
class of problem is particularly relevant in insurance and risk management settings and we
demonstrate this on an important application domain based on insurance strategies in Oper-
ational Risk management for financial institutions. In this area of risk management the most
prevalent class of loss process models is the Loss Distribution Approach (LDA) framework
which involves modelling annual losses via a compound process. Given an LDA model
framework, we consider Operational Risk insurance products that mitigate the risk for such
loss processes and may reduce capital requirements. In particular, we consider insurance
products that grant the policy holder the right to insure k of its annual Operational losses in
a horizon of T years. We consider two insurance product structures and two general model
settings, the first are families of relevant LDA loss models that we can obtain closed form
optimal stopping rules for under each generic insurance mitigation structure and then sec-
ondly classes of LDA models for which we can develop closed form approximations of
the optimal stopping rules. In particular, for losses following a compound Poisson process
with jump size given by an Inverse-Gaussian distribution and two generic types of insur-
ance mitigation, we are able to derive analytic expressions for the loss process modified by
the insurance application, as well as closed form solutions for the optimal multiple stop-
ping rules in discrete time (annually). When the combination of insurance mitigation and
jump size distribution does not lead to tractable stopping rules we develop a principled
class of closed form approximations to the optimal decision rule. These approximations are
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developed based on a class of orthogonal Askey polynomial series basis expansion repre-
sentations of the annual loss compound process distribution and functions of this annual
loss.

Keywords Insurance · Multiple stopping rules · Operational risk
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1 Introduction

In this paper we consider probability models comprised of classes of compound processes
that are widely used in applications in risk and insurance modelling. In particular we con-
sider how to solve multiple optimal stopping time problems where at times of stopping the
compound process under consideration is modified by an action taken, and we aim to find
the optimal set of times at which such actions should be taken to achieve the minimization
of an objective function or gain function.

In the context of applied probability modelling where such frameworks are particularly
important to consider we address the class of insurance mitigation problems in Operational
Risk modelling. In the Basel II document (BCBS 2006), OpRisk “is defined as the risk
of loss resulting from inadequate or failed internal processes, people and systems or from
external events. This definition includes legal risk, but excludes strategic and reputational
risk”. Also, OpRisk events should be classified in one of the event types of Table 1 and
recorded as taking place in one of the business lines of the same Table.

Under the Basel III (BCBS 2010) banking regulation that is the core financial regulation
framework for Operational Risk modelling in all financial institutions, the core advanced
risk modelling framework known as the Advanced Measurement Approach (AMA) dis-
cusses such classes of loss model primarily given by compound processes. It advocates their
use for practical application under the Loss Distribution Approach (LDA) framework.

Under this LDA, the fundamental model framework used by large banks to capture Oper-
ational Risk (OpRisk), annual OpRisk losses are usually modelled as a counting process,
such as a compound Poisson processes (CPP), where the Poisson random variable denotes
the frequency of the losses (how many of them occur during the year) and the jump size dis-
tribution models the severity of each loss. Under Basel III guidelines, the application of an
action to mitigate loss exposures and reduce regulatory capital requirements is permitted.

Table 1 Basel II business lines (left) and event types (right) – see BCBS (2006), Annexes 8 and 9

Business line Event type

1 Corporate finance 1 Internal fraud

2 Trading and sales 2 External fraud

3 Retail banking 3 Employment practices and workplace safety

4 Commercial banking 4 Clients, products and business practices

5 Payment and settlement 5 Damage to physical assets

6 Agency services 6 Business disruption and system failures

7 Asset management 7 Execution, delivery and process management

8 Retail brokerage
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In this context we consider classes of risk transfer mechanisms based on insurance products
applied to modify the compound process loss model in some manner dictated by the type
of insurance product under consideration. We design objective functions that related to loss
mitigation over a time horizon of T years and solve for optimal insurance exercise times
under a framework of multiple optimal stopping criteria.

Within this context we solve, in discrete time, a class of optimal multiple stopping prob-
lems which arise from a new family of insurance products, providing closed form solution
for the stopping rules. Since the knowledge of the distribution of the annual OpRisk loss
after the usage of the insurance policy is essential for the calculation of the multiple stop-
ping rule, for LDA models that (after insurance mitigation) are not analytically tractable we
derive a closed form approximation to this distribution based on Askey polynomial expan-
sions. Since the approximating distribution has support on the positive real line, Gamma
densities are used as a basis and possible problems with the positivity of the estimated
density are also discussed.

1.1 Insurance and Operational Risk

Since the New Basel Capital Accord in 2004 (Basel II), Operational Risk (OpRisk) quan-
tification has become increasingly important for financial institutions. However, the same
degree of attention has not yet been devoted to insurance mitigation of OpRisk losses nor,
consequently, to detailed analysis of potential risk and capital reduction that different risk
transfer strategies in OpRisk may allow.

Historically the transference of credit and market risks through credit derivatives and
interest rate swaps, for example, has been an active subject of extensive studies both from
practitioners and academics while only a few references about OpRisk transfer of risk and
possible approach to such risk transfers can be found in the literature (see Brandts 2004,
Bazzarello et al. 2006 and Peters et al. 2011). This slow uptake of insurance policies in
OpRisk for capital mitigation can be partially attributed to four general factors: (a) there
still remains a rather limited understanding of the impact on capital reduction of currently
available OpRisk insurance products, especially in the complex multi-risk, multi-period sce-
narios; (b) the relative conservative Basel II regulatory cap of 20 % in a given year (for AMA
models); (c) the limited understanding at present of the products and types of risk transfer
mechanisms available for OpRisk processes; and (d) the limited competition for insurance
products available primarily for OpRisk, where yearly premiums and minimum Tier I cap-
ital requirements required to even enter into the market for such products precludes the
majority of banks and financial institutions in many jurisdictions.

Some of the reasons for these four factors arises when one realises that OpRisk is partic-
ularly challenging to undertake general risk transfer strategies for, since its risk processes
range from loss processes which are insurable in a traditional sense (see Definition 2)
to infrequent high consequence loss processes which may be only partially insurable and
may result from extreme losses typically covered by catastrophe bonds and other types of
risk transfer mechanisms. For these reasons, the development of risk transfer products for
OpRisk settings by insurers is a relatively new and growing field in both academic research
and industry, where new products are developed as greater understanding of catastrophe and
high consequence low frequency loss processes are better understood.

To qualify these points, consider factor (d). In terms of special products, a large reinsur-
ance company that offers a number of products in the space of OpRisk loss processes to
a global market is Swiss Re. They have teams such as in the US the Excess and Surplus
market Casualty group which specialises in “U.S-domiciled surplus lines wholesale brokers
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with primary, umbrella and follow-form excess capacity for difficult-to-place risks in the
Excess and Surplus market”. This group aims to seek coverage solutions for challenging
risks not in the standard/admitted market. The types of coverage limits offered are quoted
as being of the range: USD 10 million limits in umbrella and follow form excess; USD
5 million CGL limits for each occurrence; USD 5 million general aggregate limit; USD 5
million products/completed operations; and USD 5 million personal and advertising injury.
There is also groups like the Professional and Management Liability team in Swiss Re that
provide bespoke products for “protection for organisations and their executives, as well as
other professionals, against allegations of wrong-doing, mismanagement, negligence, and
other related exposures.” In addition as discussed in Van den Brink (2002) there are some
special products that are available for OpRisk insurance coverage offered by Swiss Re and
known as the Financial Institutions OpRisk Insurance (FIORI) which covers OpRisk causes
such as Liability, Fidelity and unauthorised activity, Technology risk, Asset protection and
External fraud. It is noted in Chernobai et al. (2008) that the existence of such specialised
products is limited in scope and market since the resulting premium one may be required to
pay for such an insurance product can typically run into very significant costs, removing the
actual gain from obtaining the insurance contract in terms of capital mitigation in the first
place. Hence, although the impact of insurance in OpRisk management is yet to be fully
understood it is clear that it is a critical tool for the management of exposures and should be
studied more carefully.

At this stage it is beneficial to recall the fundamental definition of an insurance policy or
contract.

Definition 1 (Insurance Policy) At a fundamental level one can consider insurance to be
the fair transfer of risk associated with a loss process between two financial entities. The
transfer of risk is formalized in a legal insurance contract which is facilitated by the financial
entity taking out the insurance mitigation making a payment to the insurer offering the
reduction in risk exposure. The contract or insurance policy legally sets out the terms of
the coverage with regard to the conditions and circumstances under which the insured will
be financially compensated in the event of a loss. As a consequence the insurance contract
policy holder assumes a guaranteed and often known proportionally small loss in the form
of a premium payment corresponding to the cost of the contract in return for the legal
requirement for the insurer to indemnify the policy holder in the event of a loss.

Under this definition one can then interpret the notion of insurance as a risk management
process in which a financial institution may hedge against potential losses from a given risk
process or group of risk processes. In Mehr et al. (1980) and Berliner (1982) they discuss
at a high level the fundamental characteristics of what it means to be an insurable loss or
risk process, which we note in Definition 2. We observe that this standard Actuarial view
on insurability does not always coincide directly to the economists view.

Definition 2 (Insurable Losses) In Mehr et al. (1980) and (Chernobai et al. 2008, chapter
3) they define an insurable risk as one that should satisfy the following characteristics:

1. The risks must satisfy the “Law of Large Numbers”, i.e. there should be a large number
of similar exposures.

2. The loss must take place a known recorded time, place and from a reportable cause.
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3. The loss process must be considered subject to randomness. That is, the events that
result in the generation of a claim should be random or at a minimum outside the control
of the policy holder.

4. The loss amounts generated by a particular risk process must be commensurate with the
charged premium, and associated insurer business costs such as claim analysis, contract
issuance and processing.

5. The estimated premium associated with a loss process must be affordable. This is par-
ticularly important in high consequence rare-event settings, see discussions in Peters
et al. (2011) who consider this question in a general setting.

6. The probability of a loss should be able to be estimated for a given risk process as well
and some statistic characterizing the typical, average, median etc. loss amount.

7. Either the risk process has a very limited chance of a catastrophic loss that would
bankrupt the insurer and in addition the events that occur to create a loss occur in a
non-clustered fashion, or the insurer will cap the total exposure.

In Gollier (2005) the authors argue that there is also a need to consider the economic
ramifications for insurable risks. In particular they add to this definition of insurable risks
the need to consider the economic market for such risk transfers. In particular they discuss
uninsurable and partially insurable losses, where an uninsurable loss occurs when “..., given
the economic environment, no mutually advantageous risk transfer can be exploited by the
consumer and the supplier of insurance”. A partially uninsurable loss arises when the two
parties to the risk transfer exchange can only partially benefit or exploit the mutually advan-
tageous components of the risk transfer, this has been considered in numerous studies, see
Aase (1993), Arrow (1953), Arrow (1965), Borch (1962), and Raviv (1979).

As noted in Gollier (2005), from the economists perspective the basic model for risk
transfer involves a competitive insurance market in which the Law of Large Numbers is
utilised as part of the evaluation of the social surplus of the transfer of risk. However, unlike
the actuarial view presented above, the maximum potential loss and the probabilities asso-
ciated with this loss are not directly influential when it comes to assessing the size of risk
transfers at market equilibrium. In addition the economic model adds factors related to the
degree of risk aversion of market participants (agents) and their degree of optimism when
assessing the insurability of risks in the economy. Classically these features are all captured
by the economic model know as the Arrow-Borch-Raviv model of perfect competition in
insurance markets, see a good review in (Gollier 2005, section 2) and Ghossoub (2012).

In the work developed here we pose an interesting general question of how may one
construct insurance products satisfying the axioms and definitions above whilst allowing
a sufficiently general class of policies, to be discussed in the sequel. This class may actu-
ally be suitable for a wider range of financial institutions and banks than those specialised
products currently on offer. More specifically, in this paper we discuss aspects of an insur-
ance product that provides its owner several opportunities to decide which annual OpRisk
loss(es) to insure. This product can be thought of as a way to decrease the cost paid by
its owner to the insurance company in a similar way to what occurs with swing options in
energy markets (see for example, Jaillet et al. 2004 and Carmona and Touzi 2008): instead
of buying T yearly insurance policies over a period of T years, the buyer can negotiate with
the insurance company a contract that covers only k of the T years (to be chosen by the
owner). This type of structured product will result in a reduction in the cost of insurance
or partial insurance for OpRisk losses and this aspect is highlighted in Carmona and Touzi
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(2009, page 188), where they note that “even without considering the cost of major catastro-
phes, insurance coverage is very expensive”. In addition, we argue it may be interesting to
explore such structures if the flexibility they provide results in an increased uptake of such
products for OpRisk coverage, further reducing insurance premiums and resulting perhaps
in greater competition in the market for these products.

The general insurance product presented here can accommodate any form of insurance
policy, but we will focus on two basic generic “building block” policies (see Definitions 3
and 4) which can be combined to create more complex types of protection. For these two
basic policies we present a “moderate-tailed” model for annual risks that leads to closed
form usage strategies of the insurance product, answering the question: when is it optimal
to ask the insurance company to cover the annual losses?

For the rest of the paper we assume that throughout a year a financial institution incurs a
random number of loss events, say N, with severities (loss amounts) X1, . . . , XN . Addition-
ally, we suppose the company holds an insurance product that lasts for T years and grants
the company the right to mitigate k of its T annual losses through utilisation of its insurance
claims. To clarify consider a given year t ≤ T where the company will incur N(t) losses
adding up to Z(t) = ∑N(t)

n=1 Xn(t), assuming it has not yet utilised all its k insurance miti-
gations it then has the choice to make an insurance claim or not. If it utilises the insurance
claim in this year the resulting annual loss will be denoted by Z̃(t). Such a loss process
model structure is standard in OpRisk and insurance and is typically referred to as the LDA
which we illustrate an example instance of in Fig. 1.

In this context the company’s aim is to choose k distinct years out of the T in order
to minimize its expected operational loss over the time interval [0, T ], where it is worth
noting that if Z > Z̃ i.e., if the insurance is actually mitigating the company’s losses, all
its k rights should be exercised. The question that then must be addressed is what is the
optimal decision rule, i.e. define the multiple optimal stopping times for making the k sets
of insurance claims.

The rest of the paper is organized as follows. In Section 2 we present the insurance poli-
cies we use as mitigation for the insurance product described above. Section 3 presents an
overview of useful theoretical results in the field of multiple stopping rules for independent
observations in discrete time, in particular Theorem 1 which is the main result in this Sec-
tion. A summary of properties related to the LDA model used in this paper is presented in

Fig. 1 Schematic representation of a LDA model. The aggregated loss in each year is represented hatched
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Section 4 and used in Section 5 to present the main contribution of this work, namely closed
form solutions for the optimal multiple stopping rules for the insurance products considered.
In Section 6 we check the theoretical optimality of the rules derived in Section 5, comparing
them with predefined rules.

Since these closed form results rely upon the stochastic loss model considered, we also
provide a general framework applicable for any loss process. Therefore, in Section 7 we
discuss a method based on series expansions of unknown densities to calculate the opti-
mal rules when the combination of insurance policy and severity density does not lead to
analytical results. The conclusions and some final considerations are shown in Section 8.

2 Insurance Policies

As stated before, the insurance policies presented here must be thought as building blocks
for more elaborated ones, leading to mitigation of more complex sources of risk. It also
worth noticing that the policies presented are just a mathematical model of the actual poli-
cies that would be sold in practice and although some characteristics, such as deductibles,
can be incorporated in the model they are not presented at this stage.

In the sequel we present these basic insurance policies the company can use in the insur-
ance product. For the sake of notational simplicity, if a process

{
Z(t)

}T
t=1 is a sequence of

i.i.d. random variables, we will drop the time index and denote a generic r.v. from this pro-
cess as Z. For the rest of the paper IA will denote the indicator function on the event A, i.e.,
IA = 1 if A is valid and zero otherwise.

Definition 3 (Individual Loss Policy (ILP)) This policy applies a constant haircut to the
loss process in year t in which individual losses experience a Top Cover Limit (TCL) as
specified by

Z̃ =
N∑

n=1

max (Xn − TCL, 0) .

Definition 4 (Accumulated Loss Policy (ALP)) The ALP provides a specified maximum
compensation on losses experienced over a year. If this maximum compensation is denoted
by ALP then the annual insured process is defined as

Z̃ = max

(
N∑

n=1

Xn − ALP, 0

)

.

To characterize the annual application of such policies we provide a schematic repre-
sentation of each of these policies in Figs. 2 to 3, assuming the same losses as in Fig. 1.
The (part of the) loss mitigated by the insurance policy is represented by a white bar and
the remaining loss due to the owner of the insurance product is painted grey. As in Fig. 1,
annual losses are represented by hatched bars.

3 Multiple Optimal Decision Rules

Assume an agent sequentially observe a process
{
W(t)

}T
t=1, for a fixed T < +∞ and wants

to choose k < T of these observations in order to maximize (or minimize, as discussed
later on Remark 2) the expected sum of these chosen observations. For k = 1, this problem
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Fig. 2 Individual Loss Policy (ILP) with TCL level of 1.5

is known in the literature as the house selling problem (see Sofronov 2013 for an updated
literature review) since one of its interpretations is as follows. If the agent is willing to sell
a house and assume that at most T bids will be observed he wants to choose the optimal
time τ such that the house will be sold for the highest possible value. The extension of this
problem for k > 1 is know as the multiple house selling problem, where the agent wants to
sell k identical houses. It is worth noting that in our insurance problem the agent is interested
in choosing k periods to exercise the insurance policy in order to minimize loss, in a sense
that will be make precise shortly in this paper.

Formally, the mathematical framework of this problem consists of a filtered probabil-
ity space

(
Ω,F , {Ft }t≥0,P

)
, where Ft = σ

(
W(t)

)
is the sigma-algebra generated by

W(t). Within this framework, where we assume the flow of information is given only by
the observed values of W, it is clear that any decision at time t should take into account only
values of the process W up to time t. It is also required that two actions can not take place
at the same time, i.e., we do not allow two stopping times to occur at the same discrete time
instant. These assumptions are precisely stated in the following definition, but for further
details on the theory of multiple optimal stopping rules we refer the reader to Sofronov et al.
(2006), Nikolaev and Sofronov (2007), and Sofronov (2013).

Fig. 3 Accumulated Loss Policy (ALP) with ALP level of 2.0
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Definition 5 A collection of integer-valued random variables (τ1, . . . , τi) is called an i-
multiple stopping rule if the following conditions hold:

(a) {ω ∈ Ω : τ1(ω) = m1, . . . , τj (ω) = mj } ∈ Fmj
, ∀mj > mj−1 > . . . > m1 ≥

1, j = 1, . . . , i;
(b) 1 ≤ τ1 < τ2 < . . . < τi < +∞, (P-a.s.).

Given the mathematical definition of a stopping rule the notion of optimality of these
rules can be made precise in the following definitions.

Definition 6 For a given multiple stopping rule τ = (τ1, . . . , τk) the gain function utilized
in this paper takes the following additive form:

g(τ ) = W(τ1) + . . . + W(τk).

Definition 7 Let Sm be the class of multiple stopping rules τ = (τ1, . . . , τk) such that
τ1 ≥ m (P-a.s.). The function

vm = sup
τ∈Sm

E[g(τ )],
is defined as the m-value of the game and, in particular, if m = 1 then v1 is the value of the
game.

Definition 8 A multiple stopping rule τ ∗ ∈ Sm is called an optimal multiple stopping rule
in Sm if E[g(τ ∗)] < +∞ and E[g(τ ∗)] = vm.

The following result (presented in Sofronov et al. 2006 and Nikolaev and Sofronov 2007)
provides the optimal multiple stopping rule that maximizes the expectation of the sum of
the observations (see Fig. 4 for a schematic representation).

Theorem 1 Let W(1), . . . , W(T ) be a sequence of independent random variables with
known distribution functions F1, . . . , FT , and the gain function g(τ ) = ∑k

j=1W(τj ). Let

vL,l be the value of a game where the agent is allowed to stop l times (l � k) and there are
L (L � T ) steps remaining. If there exist E[W(1)],E[W(2)], . . . ,E[W(T )] then the value
of the game is given by

v1,1 = E[W(T )],
vL,1 = E

[
max{W(T − L + 1), vL−1,1}], 1 < L ≤ T ,

vL,l+1 = E
[
max{vL−1,l + W(T − L + 1), vL−1,l+1}], l + 1 < L ≤ T ,

vl,l = E

[
vl−1,l−1 + W(T − l + 1)

]
.

If we put

τ ∗
1 = min{m1 : 1 � m1 � T − k + 1,W(m1) � vT −m1,k − vT −m1,k−1};

τ ∗
i = min{mi : τ ∗

i−1 < mi � T − k + i, W(mi) � vT −mi,k−i+1 − vT −mi,k−i}, i = 2, . . . , k − 1;
τ ∗
k = min{mk : τ ∗

k−1 < mk � T , W(mk) � vT −mk,1};
(1)

then τ ∗ = (τ ∗
1 , . . . , τ ∗

k

)
is the optimal multiple stopping rule.

In the context we consider it will always be optimal to stop the process exactly k times,
but this may not be true, for example, if some reward is given to the product holder for
less than k years of claims of insurance. In the absence of such considerations, we proceed
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with assuming always k years of claims will be made. In Theorem 1 we can see that the
value function for L > l is artificial and v0,1, for example, has no interpretation. On the
other hand, v1,1 can not be calculated using the general formula (it would depend on v0,1).
With one stop remaining and one step left, from the reasons given above, we are obliged
to stop, and, therefore, there is no maximization step when calculating v1,1, i.e., v1,1 =
E[W(T − 1 + 1)]. The same argument is valid for l > 1 and, in this case,

vL,l = E

[
max{vL−1,l−1 + W(T − L + 1), vL−1,l}

]
, 1 ≤ l ≤ T ,

and, if we have l ≤ (T −1) steps left and also l stops, we must stop in all the steps remaining.
So,

vl,l = E

[
vl−1,l−1 + W(T − l + 1)

]
.

From Theorem 1 and the assumption of independence of the annual losses, we can
see that to be able to calculate the optimal rule we only need to calculate (unconditional)
expectations of the form E[max{c1 + W, c2}], for different values of c1 and c2, such that
c1 = vL−1,l and c2 = vL−1,l+1. In addition, since 0 ≤ vL−1,l ≤ vL−1,l+1, we actually only
need to calculate E[max{c1 + W, c2}] for 0 ≤ c1 ≤ c2 (Fig. 4).

3.1 Objective Functions for Rational and Boundedly Rational Insurers

In this paper we will consider two possible general populations for the potential insurer.
The first group are those that are perfectly rational, meaning that they will always act in
an optimal fashion when given the chance and, more importantly, are capable (i.e. have the
resources) to figure out what is the optimal behaviour. In this case we will consider a global
objective function to be optimized.

The second group represent boundedly rational insurers who act sub-optimally. This
group represents firms who are incapable or lack the resources/knowledge to understand
how to act optimally when determining their optimal behaviours/actions and will be
captured by local behaviours.

Hence, these two populations will be encoded in two objective functions: one which is
optimal (globally) and one which represents a sub-optimal (local strategy) the boundedly
rational population would likely adopt. These behaviours can be made precise through the
following exercising strategies, for the first and second groups, respectively.

1. Global Risk Transfer Strategy: Minimizes the (expected) total loss over the period
[0, T ];

2. Local Risk Transfer Strategy: Minimizes the (expected) sum of the losses at the
insurance times (i.e. stopping times).

These two different groups can be understood as, for example, large corporations, with
employees dedicated to fully understand the mathematical nuances of this kind of contract
and small companies, with limited access to information. The group with “bounded ratio-
nality” may decide (heuristically, without the usage of any mathematical tool) to follow the
so-called Local Risk Transfer Strategy, which will produce smaller gain in the period [0, T ].
As we will see in Section 6 these two different objective functions can lead to completely
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Fig. 4 Schematic representation of the value function iteration

different exercising strategies, and we believe the insurance company who sells this contract
should be aware of these different behaviours.

For the first loss function the formal objective is to minimize

T∑

t=1
t /∈{τ1,...,τk }

Z(t) +
k∑

j=1

Z̃(τj ) =
T∑

t=1

Z(t) −
T∑

t=1
t∈{τ1,...,τk }

{
Z(t) − Z̃(t)

}
.

Since
∑T

t=1Z(t) does not depend on the choice of τ1, . . . , τk , this is, in fact, equivalent to
maximize

k∑

j=1

W(τj ) =
k∑

j=1

{
Z(τj ) − Z̃(τj )

}
,

where the process W is defined as W(t) = Z(t) − Z̃(t).
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For the second objective function, the company aims to minimise the total loss not over
period [0, T ] but instead only at times at which the decisions are taken to apply insurance
and therefore claim against losses in the given year,

k∑

j=1

Z̃(τj ),

and, in this case, the process W should be viewed as W(t) = −Z̃(t).

Remark 1 Note that if the agent is trying to maximize the first loss function (using W =
Z − Z̃), then W is non-negative stochastic process, and only one kind of expectation is
required to be calculated, since if c1 = c2 = 0, then E[max{c1 + W, c2}] = E[W ].

Remark 2 If the agent is trying to minimize the expected gain of the sum of Z̃(t) random
variables (instead of maximizing it) one can rewrite the problem as follows. Define a process

W(t) = −Z̃(t) and note that minE
[∑k

j=1Z̃(τj )
]

= maxE
[∑k

j=1W(τj )
]
. Therefore the

optimal stopping times that maximize the expected sum of the process W are the same that
minimize the expected sum of the process Z̃.

The present work is mainly devoted to the study of a combination of insurance policy
and severity distribution that leads to closed form results of the value function integrals,
which, in turn, are required for closed form multiple optimal stopping rules. Nonetheless,
on Section 7 we also show how one can develop principled approximation procedures in
order to calculate the distribution of the insured process Z̃ and, consequently, the optimal
rule. In the remainder of this section we present a very simple example using the second
(local) objective function, where we assume the annual insured losses are modelled as Log-
Normal random variables. The reader should note this assumption is an approximation to
the usual LDA model, where severities are assumed to be Log-Normally distributed.

Example 1 (Log-Normal) Assume that the insured losses Z̃(1), . . . , Z̃(T ) form a sequence
of i.i.d. random variables such that Z̃ ∼ Log-Normal(0,1). To calculate the multiple optimal
rule that minimizes the expected loss let us define W = −Z̃. The values of the game using
the equations in Theorem 1 can be seen in Table 2.

Note that Table 2 presents the value of expected loss at the times we stop, i.e.,

E

[∑k
j=1 − Z̃(τj )

]
, so it only makes sense to compare values within the same column.

Doing so one can see that for a fixed number of stops l, the value of the game is increas-
ing with the number of steps remaining. In other words the more one can wait to decide in
which step to stop the smaller is the expected loss.

If we suppose that T = 7, and we are granted four stops the expected loss is v7,4 =
−3.32. In this case the optimal stopping rule is given by

τ ∗
1 = min{m1 : 1 � m1 � 4, W(m1) � v7−m1,4 − v7−m1,3},

τ ∗
2 = min{m2 : τ ∗

1 < m2 � 5,W(m2) � v7−m2,3 − v7−m2,2},
τ ∗

3 = min{m3 : τ ∗
2 < m3 � 6,W(m3) � v7−m3,2 − v7−m3,1},

τ ∗
4 = min{m4 : τ ∗

3 < m4 � 7,W(m4) � v7−m4,1}.
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Table 2 Table of the value function for different L (steps remaining) and l stops in the Log-Normal example

L l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8 l = 9

0 0.00

1 −1.65 0.00

2 −1.02 −3.30 0.00

3 −0.77 −2.19 −4.95 0.00

4 −0.64 −1.71 −3.45 −6.59 0.00

5 −0.55 −1.43 −2.76 −4.77 −8.24 0.00

6 −0.49 −1.25 −2.34 −3.87 −6.12 −9.89 0.00

7 −0.44 −1.12 −2.05 −3.32 −5.04 −7.51 −11.54 0.00

8 −0.41 −1.02 −1.85 −2.94 −4.36 −6.26 −8.91 −13.19 0.00

9 −0.38 −0.94 −1.69 −2.65 −3.88 −5.45 −7.50 −10.34 −14.84

10 −0.36 −0.88 −1.56 −2.43 −3.52 −4.87 −6.58 −8.78 −11.78

For instance, if we observe the sequence

w1 = −0.57, w2 = −0.79, w3 = −4.75, w4 = −1.07, w5 = −1.14, w6 = −5.56, w7 = −1.59,

then the optimal stopping times are given by:

τ ∗
1 = 1, since w1 = −0.57 ≥ v7−1,4 − v7−1,3 = −3.87 − (−2.34) = −1.53;

τ ∗
2 = 2, since w2 = −0.79 ≥ v7−2,3 − v7−2,2 = −2.76 − (−1.43) = −1.33;

τ ∗
3 = 4, since w4 = −1.07 ≥ v7−4,2 − v7−4,1 = −2.19 − (−0.77) = −1.42;

τ ∗
4 = 7, because we are obliged to stop exactly 4 times.

In this case the realized loss at the stopping times is −0.57 − 0.79 − 1.07 − 1.59 = −4.02,
wich should be comparable with the expected loss under the optimal rule: −3.32.

4 Loss Process Models via LDA

Before discussing the application of the Theorem 1 to the problem of choosing the multiple
exercising dates of the insurance product present in Section 1.1, in this Section we present
the LDA model that leads to closed form solutions in Section 5.

The LDA in OpRisk assumes that during a year t a company suffers N(t) operational
losses, with N(t) following some counting distribution (usually Poisson or Negative Bino-
mial). The severity of each of these losses is denoted by X1(t), . . . , XN(t)(t) and the

cumulative loss by the end of year t is given by Z(t) = ∑N(t)
n=1 Xn(t). For the purpose of

modelling OpRisk losses it is essential that the severity density allows extreme events to
occur, since these events often occur in practice, as shown, for example, in Peters et al.
(2013, Section 1.1). Following the nomenclature in Franzetti (2011, Table 3.3), the Inverse
Gaussian distribution possess a “moderate tail” which makes it a reasonable model for
OpRisk losses for many risk process types and is often used in practice. This family of dis-
tributions also has the advantage of being closed under convolution and this characteristic
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is essential if closed form solutions for the multiple optimal stopping problem are to be
obtained.

Remark 3 The recently released European Banking Authority (EBA) Regulatory Techni-
cal Standards for Operational Risk (EBA 2015) requires that sub-exponential distributions
should be used to model OpRisk severities, “unless exceptional reasons exist”. Although
Inverse Gaussian distributions are not sub-exponential (see Embrechts 1983) they can pro-
vide similar fittings to Log-Normal distributions (Chhikara and Folks 1977). Moreover,
for datasets not sufficiently well approximated by Inverse Gaussian severities, Section 7
provides a general approximation scheme for the optimal strategy.

In the closed form solutions we present for the different insurance policies we use prop-
erties of the Inverse Gaussian distribution and its relationship with the Generalized Inverse
Gaussian distribution. The following Lemmas will be used throughout; see additional details
in Folks and Chhikara (1978) and Jørgensen (1982).

In the following, let X1, . . . , Xn be a sequence of i.i.d. Inverse Gaussian (IG) random
variable with parameters μ, λ > 0, i.e.,

fX(x; μ, λ) =
(

λ

2π

)1/2

x−3/2 exp

{
−λ(x − μ)2

2μ2x

}

, x > 0.

Let also G be a Generalized Inverse Gaussian (GIG) r.v. with parameters α, β > 0, p ∈ R,
i.e.,

fG(x; α, β, p) = (α/β)p/2

2Kp(
√

αβ)
xp−1 exp

{

−1

2
(αx + β/x)

}

, x > 0,

where Kp is a modified Bessel function of the third kind (sometimes called modified Bessel
function of the second kind), defined as

Kp(z) = 1

2

∫ +∞

0
up−1e−z(u+1/u)/2du.

Lemma 1 The Inverse Gaussian family of random variables is closed under convolution
and the distribution of its sum is given by

Sn :=
∑n

l=1
Xl ∼ IG(nμ, n2λ). (2)

Lemma 2 Any Inverse Gaussian random variable can be represented as a Generalized
Inverse Gaussian, and for the particular case of Lemma 1 the relationship is

fSn(x; nμ, n2λ) ≡ fG(x; λ/μ2, n2λ,−1/2). (3)

Lemma 3 Modified Bessel functions of the third kind are symmetric around zero in the
parameter p. In particular when p = 1/2,

K1/2

(
nλ
μ

)

K−1/2

(
nλ
μ

) = 1. (4)
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Lemma 4 The density of an Inverse Gaussian r.v. has the following property (which clearly
holds for any power of x, with the proper adjustment in the last parameter of the GIG on
the right hand side of Eq. 5):

xfG(x; λ/μ2, n2λ,−1/2) ≡ nμ fG(x; λ/μ2, n2λ, 1/2). (5)

Proof (of Lemmas 1–4) The proof of Lemma 1 can be found in Tweedie (1957, Section 2)
and the result in Lemma 2 can be seen by comparing the kernel of both distributions.

The symmetry in Lemma 3 can be seen through the following characterization of
modified Bessel functions of the third kind

Kp(x) :=
∫ +∞

0
exp {−x cosh(t)} cosh(pt)dt,

(see Watson 1922, page 181) and the fact that cosh(−p) = (−1) cosh(p). The last result,
Lemma 4, follows from Lemma 3 and a simple comparison of the densities.

5 Closed-Form Multiple Optimal Stopping Rules for Multiple Insurance
Purchase Decisions

In this Section we present some models in which the optimal rules can be calculated explic-
itly, with all the technical proofs postponed to the Appendix. Using the results presented
in Section 4 we show that if we assume a Poisson-Inverse Gaussian LDA model, where
Xn ∼ IG(λ,μ) and N ∼ Poi(λN), the optimal times (years) to exercise or make claims
on the insurance policy for the Accumulated Loss Policy (ALP) can be calculated ana-
lytically regardless of where the global or local gain (objective) functions are considered.
For the Individual Loss Policy (ILP), when using the gain function as the local objec-
tive function given by the sum of the losses at the stopping times (insurance claim years)
we propose to model the losses after the insurance policy is applied and, in this case, we
present analytical solutions for the stopping rules. On the other hand, the ILP Total loss
case given by the global objective function does not produce a closed form solution. How-
ever, we show how a simple Monte Carlo scheme can be used to accurately estimate the
results.

Since we assume the annual losses Z(1), . . . , Z(T ) are identically distributed we will
denote by Z a r.v. such that Z ∼ Z(1). As in the other Sections Z̃ is the insured process;
Sn = ∑n

k=1Xk is the partial sum up to the n-th loss; pm = P[N = m] is the probability of
observing m losses in one year. The gain W will be defined as either −Z̃, when the objective
is to minimize the loss at the times the company uses the insurance policy (local optimality),
or Z − Z̃, in case the function to be minimized is the total loss over the time horizon [0, T ],
i.e. (global optimality).

5.1 Accumulated Loss Policy (ALP)

For the ALP case (see Definition 4) we can model the severity of the losses before applying
the insurance policy. Conditional upon the fact that

∑m
n=1Xn > ALP , then the annual loss

after the application of the insurance policy will be
∑m

n=1Xn − ALP . With this in mind,
we can then calculate the c.d.f.’s of the insured process, Z̃ and also of the random variable
Z − Z̃.
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5.1.1 Local Risk Transfer Objective: Minimizing the Loss at the Stopping Times

Proposition 1 (Local Risk Transfer Case) The cdf and pdf of the insured process are
given, respectively, by

FZ̃(z) =
+∞∑

m=1

FIG(z + ALP ; mμ, m2λ)pm + C0, (6)

fZ̃(z) =
+∞∑

m=1

{
fIG(z + ALP ; mμ, m2λ)pm

}
I{z>0} + C0I{z=0}; (7)

where the constant C0 is defined as C0 :=∑+∞
m=1FIG(ALP ; mμ,m2λ)pm + p0.

After calculating the distribution of Z̃ we can calculate expectations of the form
E [max {c1 + W, c2}] w.r.t. the loss process Z and, therefore one can consequently obtain the
multiple optimal stopping rules under the Accumulated Loss Policy via direct application
of Theorem 1.

Theorem 2 (Local Risk Transfer Case) Using the notation of Theorem 1 and defining
W(t) = −Z̃(t), for t = 1, . . . , T the multiple optimal stopping rule is given by the set of
equations in Eq. 1, where

v1,1 = −
+∞∑

m=1

pm

(
mμFGIG(ALP ; λ/μ2, m2λ, 1/2)

−ALPFGIG(ALP ; λ/μ2,m2λ,−1/2)
)
,

vL,1 = −
+∞∑

m=1

pm

[(

mμ
(
FGIG(vL−1,1 + ALP ; λ/μ2, m2λ, 1/2)

−FGIG(ALP ; λ/μ2, m2λ, 1/2)
)

+ALP
(
FGIG(vL−1,1 + ALP ; λ/μ2,m2λ, −1/2)

−FGIG(ALP ; λ/μ2, m2λ,−1/2)
))

+vL−1,1FGIG(vL−1,1 + ALP ; λ/μ2,m2λ, −1/2)

]

,

vL,l+1 = −
+∞∑

m=1

pm

[(

mμ
(
FGIG(vL−1,l+1 − vL−1,l + ALP ; λ/μ2, m2λ, 1/2)

−FGIG(ALP ; λ/μ2, m2λ, 1/2)
)

−(vL−1,l − ALP)
(
FGIG(vL−1,l+1 − vL−1,l + ALP ; λ/μ2,m2λ,−1/2)

−FGIG(ALP ; λ/μ2, m2λ,−1/2)
))
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+vL−1,l+1FGIG(vL−1,l+1 − vL−1,l + ALP ; λ/μ2,m2λ,−1/2)

]

− vL−1,lC0,

vl,l = vl−1,l−1 −
+∞∑

m=1

pm

(
mμFGIG(ALP ; λ/μ2, m2λ, 1/2)

)

−ALPFGIG(ALP ; λ/μ2, m2λ, −1/2)
)
.

5.1.2 Global Risk Transfer Objective: Minimizing the Loss Over Period [0, T ]
If we assume the company wants to minimize its total loss over the period [0, T ] the gain
achieved through the Accumulated Loss Policy (ALP) is given by

W = Z − Z̃

=
N∑

n=1

Xn −
(

N∑

n=1

Xn − ALP

)

I{∑N
n=1Xn>ALP

}

= ALP I{∑N
n=1Xn>ALP

} +
(

N∑

n=1

Xn

)

I{∑N
n=1Xn>ALP

}

= min

{

ALP,

N∑

n=1

Xn

}

.

For notational convenience we will denote by Wm = min
{
ALP,

∑m
n=1Xn

}
the annual

gain conditional on the fact that m losses were observed.

Proposition 2 (Global Risk Transfer Case: ALP) The cdf and pdf of the gain process are
given, respectively, by

FW (w) = I{w≥ALP } + FSm(w)I{w<ALP }, (8)

fW (w) =
N∑

m=1

{(
FSm(ALP)I{w=ALP } + fSm(w)I{0<w<ALP }

)
pm

}
+ p0I{w=0}. (9)

After calculating the distribution of the gain, W, we can calculate expectations w.r.t. it
and, therefore, the multiple optimal stopping rule under the Accumulated Loss Policy is
then obtained via direct application of Theorem 1.

Theorem 3 (Global Risk Transfer Case: ALP) Defining W(t) = Z(t) − Z̃(t), for t =
1, . . . , T the multiple optimal stopping rule is given by Eq. 1, where

v1,1 =
+∞∑

m=1

pm

{
FSm(ALP)ALP + mμFGIG(ALP ; λ/μ2,m2λ, 1/2)

}
,

vL,1 =
+∞∑

m=1

pm

{
FSm(ALP) max{ALP, vL−1,1}

+mμ
(
FGIG(ALP ; λ/μ2,m2λ, 1/2)

−FGIG(vL−1,1; λ/μ2,m2λ, 1/2)
)
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+vL−1,1FSm(min{vL−1,1, ALP })
}

+ p0v
L−1,1,

vL,l+1 =
+∞∑

m=1

pm

{
FSm(ALP) max{vL−1,l + ALP, vL−1,l+1}

+vL−1,l(FSm(ALP) − FSm(vL−1,l+1 − vL−1,l))

+mμ
(
FGIG(ALP ; λ/μ2,m2λ, 1/2)

−FGIG(vL−1,l+1 − vL−1,l; λ/μ2, m2λ, 1/2)
)

+vL−1,l+1FSm(min{vL−1,l+1 − vL−1,l , ALP })
}

+p0v
L−1,l+1,

vl,l =
+∞∑

m=1

pm

{
FSm(ALP)ALP + mμFGIG(ALP ; λ/μ2,m2λ, 1/2)

}
.

5.2 Individual Loss Policy (ILP)

The previous insurance policy, the ALP structure, has been based on the aggregated
amount throughout the year. In the case of the ILP insurance structure, the coverage is
not on an accumulated aggregate coverage, instead it is based on an individual loss event
coverage.

5.2.1 Local Risk Transfer Objective: Minimizing the Loss at the Stopping Times

Let us assume a company buys the insurance policy called Individual Loss Policy (ILP). In
this case, a particular loss process observed by the company after applying the insurance
policy may be given by

X1(ω) − T CL, X2(ω) − T CL, 0, 0, 0, X6(ω) − T CL, 0, . . . , XN−1(ω) − T CL, 0.

In this case we can define a new process (X̃n)n≥1 such that

X̃1(ω) := X1(ω)−T CL, X̃2(ω) :=X2(ω) − T CL, X̃3(ω) := X6(ω)−T CL, . . . , X̃Ñ (ω)

:= XN−1(ω) − T CL

and the annual insured loss would be given by Z̃ =∑Ñ
n=1X̃n. Note that in this example the

new process, (X̃n)n≥1 would have Ñ < N non zero observations and, in general, Ñ ≤ N .
The process (X̃n)n≥1 can be interpreted as an auxiliary process, meaning that if the company
had claimed on the insurance policy for this year then the observed losses would have been
X̃n, instead of Xn.
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In our approach we will model the random variable Ñ and the process (X̃n)n≥1, the first
as an homogeneous Poisson process with mean λ̃Ñ and the second as a sequence of i.i.d.
random variables such that X̃ ∼ IG(λ, μ).

Theorem 4 (Local Risk Transfer Case: ILP) Assuming that Ñ ∼ Poi(λÑ ) and

X̃1, X̃2, . . . are i.i.d. with X̃ ∼ IG(λ, μ) define Z̃(t) = ∑Ñ(t)
n=1 X̃n(t), and W(t) = −Z̃(t),

for t = 1, . . . , T . In this case the optimal stopping rule is given by Eq. 1, where

v1,1 = −λÑμ,

vL,1 = −
+∞∑

n=1

Pr[Ñ = n]
[
FGIG(vL−1,1; λ/μ2, n2λ, 1/2)nμ

−vL−1,1FGIG(vL−1,1; λ/μ2, n2λ, −1/2) + vL−1,1
]
, 1 < L ≤ T ,

vL,l+1 = −
+∞∑

n=1

Pr[Ñ = n]
[
FGIG(vL−l,l+1 − vL−l,l; λ/μ2, n2λ, 1/2)nμ

+(vL−l,l − vL−l,l+1)FGIG(vL−l,l+1 − vL−l,l; λ/μ2, n2λ, −1/2) + vL−l,l+1
]

+vL−l,lPr[Ñ = 0], l + 1 < L ≤ T ,

vl,l = vl−1,l−1 − λÑμ.

5.2.2 Global Risk Transfer Objective: Minimizing the Loss Over Period [0, T ] via
Monte Carlo

If we assume the frequency of annual losses is given by N ∼ Poi(λN) and its severities by
Xi ∼ IG(λ,μ) then the gain process W is given by

W = Z − Z̃

=
N∑

n=1

Xn −
∑N

n=1
max (Xn − T CL, 0)

=
N∑

n=1

Xn −
∑N

n=1
(Xn − T CL) I{Xn>T CL}

=
N∑

n=1

(
T CLI{Xn>T CL} + XnI{Xn≤T CL}

)

=
N∑

n=1

min{Xn, T CL}.

From Lemma 1 we know the Inverse Gaussian family is closed under convolution, but the
distribution of the sum of truncated Inverse Gaussian r.v.’s does not take any known form.
A simple and effective way to approximate the expectations necessary to the calculation of
the optimal multiple stopping rule is to use a Monte Carlo scheme as follows.
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By the end of this process we will have a sample W(1), . . . , W(M) from the gain, which
can be used to approximate, for any given values of 0 < c1 < c2 the expectations as

E[max{c1 + W, c2}] ≈ 1

M

M∑

i=1

max{c1 + W(i), c2}.

6 Case Studies

In this Section we will analyse the results provided by the optimal rule in the scenario where
analytical expressions are available. Although the loss distribution parameters are different
for each insurance policy, in this section we will assume the insurance product is valid for
T = 8 years and gives its owner the right to mitigate k = 3 losses.

First, for the Accumulated Loss Policy (ALP), Fig. 5 presents a comparison of the
two objective functions (Global and Local Risk Transfer), when the LDA parameters are
(λ, μ, λN) = (3, 2, 3) and the insurance specific parameter is set to ALP = 10. In this
case we know the probability of having an annual loss that would make it worth utilising
the insurance product in one year is P[Z > ALP ] ≈ 20 %. In this study, for a large number
of scenarios, M = 50, 000, the optimal rules from both the objective functions were cal-
culated and, for each scenario, the set of stopping times (m1,m2,m3) were calculated. On
the bottom of Fig. 5 we can see that the exercising strategy is considerably different for the
two objective functions. For the Global Risk Transfer, we can see that fixing the first two
stopping times, say (m1, m2) = (1, 2), it is preferable (on average) to use the remaining
right as early as possible. Another way to see the same pattern is to verify that the frequency
of occurrence of the set of strategies (1, 2, 3); (2, 3, 4); (3, 4, 5); (4, 5, 6) is decreasing,
again indicating a prevalence of early exercise strategies. On the other hand, if the objective
is to minimize the “local risk”, in more than 25 % of the cases the optimal strategy will be
to use the rights as soon as possible.

On the top of Fig. 5 we present histograms of the total loss over [0, T ] (i) without insur-
ance (solid line); (ii) using the global objective function (dark grey); (iii) using the local
objective function (light grey). As expected the mean of the total loss when using the local
loss function is greater than the global one, but still smaller than the total loss without any
insurance.

For both the ALP and the ILP case, we want to check the optimality of the rules pre-
sented, comparing them with pre-specified stopping rules. Denoting (m1,m2,m3) the three
stopping times, the rules are defined as follows.
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Fig. 5 Comparison of the two objective functions using the Accumulated Loss Policy (ALP): (top) his-
tograms of the total loss under the global objective function (dark grey), local objective function (light grey),
no insurance case (solid line); (bottom) Multiple optimal stopping times under the two loss functions
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(i) Rule 1 (Deterministic): Always stops at m1 = 1, m2 = 5,m3 = 8;
(ii) Rule 2 (Random): Stops randomly at three points in (1, . . . , 8), subject to 1 ≤ m1 <

m2 < m3 ≤ 8;
(iii) Rule 3 (Average): Stops when the observed loss is less than the expected loss, i.e.,

E[W ].
For a large number of scenarios, M = 10, 000, we calculated the loss for each of the
four rules (the Optimal, the Deterministic, the Random and the Average rules) and plot
the histogram, comparing with the expected loss under the optimal rule, see Fig. 6 for the
Accumulated Loss Policy (ALP) and Fig. 7 for the Individual Loss Policy (ILP). In all the
examples the Optimal rule outperforms the other three showing the difficulty of creating a
stopping rule that leads to losses as small as the optimal one.

In the first row of histograms on Fig. 6 the results are related to the global loss func-
tion, and in the second one to the local loss. Note that the horizontal axis in each line is

exactly the objective function we are trying to minimize, precisely,
T∑

t=1
t /∈{τ1,...,τk }

Z(t) +
k∑

j=1

Z̃(τj )

for the global optimization and
∑k

j=1Z̃(τj ) for the local one. In this figure the vertical
dashed bar represents the average total loss under the different rules and the solid grey line is
defined as

1. E[Z] × T − vT,k , for the global optimization
2. vT,k , for the local optimization.

These values must be understood as the expected loss under each of the two different gain
functions and are easily derived from the definition of the gain functions and Theorem 1.

On Fig. 7 we present the same comparison as in the second row of Fig. 6 using the mod-
elling proposed in Section 5.2.1, with parameters (λ, μ, λÑ ) = (3, 1, 4). For this simulation
study the conclusion is similar to the one drawn from the ALP case, where the pre-defined
stopping rules underperformed the multiple optimal rule.
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Fig. 6 Histogram of losses under four different stopping rules for the ALP case with (λ, μ, λN ) = (3, 2, 3)

and ALP = 10



Methodol Comput Appl Probab

Optimal Rule

Loss when insurance is used

Lo
ca

l R
is

k 
Tr

an
sf

er

0 5 15 25 35

0.
00

0.
05

0.
10

0.
15

Rule 1

Loss when insurance is used

0 5 15 25 35

0.
00

0.
04

0.
08

Rule 2

Loss when insurance is used

0 5 15 25 35

0.
00

0.
04

0.
08

Rule 3

Loss when insurance is used

0 5 15 25 35

0.
00

0.
04

0.
08

Fig. 7 Histogram of losses under four different stopping rules for the ILP case with (λ, μ, λÑ ) = (3, 1, 4)

7 Series Expansion for the Density of the Insured Process

Section 5 presented some combinations of Insurance Policies and LDA models that led to
closed form solutions for the multiple stopping rule. For the cases where analytical solutions
can not be found, one alternative is to create a series expansion of the density of the insured
process Z̃ such that all the expectations necessary in Theorem 1 can be analytically calcu-
lated. In this Section we will assume the first n moments of the distribution of the insured
process Z̃ are known and our objective is to minimize the local risk, but the calculations
are also valid if we work with the global optimization problem (in this case one should use
Z − Z̃ instead of Z̃).

7.1 Gamma Basis Approximation

If the n-th first moments of the insured process Z̃ can be calculated (either algebraically
or numerically) and the support of the insured random variable is [0, +∞) one can use a
series expansion of the density of Z̃ in a Gamma basis. For notational convenience, define

a new random variable U = bZ̃, where b = E[Z̃]
V ar[Z̃] and set a = E[Z̃]2

V ar[Z̃] . Denoting by fU

the density of U the idea, as in the Gaussian case of a Gram-Charlier expansion (see, e.g.,
Jondeau and Rockinger 2001), is to write fU as

fU(u) = g(u; a)
[
A0L

(a)
0 (u) + A1L

(a)
1 (u) + A2L

(a)
2 (u) + . . .

]
. (10)

Since supp(U) = supp(Z̃) = [0, +∞) we assume the kernel g(· ; a) also has positive
support (differently from the Gram-Charlier expansion, where g(·) is chosen as a Gaussian

kernel). If g(u; a) = ua−1e−u


(a)
i.e., a Gamma kernel with shape = a and scale = 1, then

the orthonormal polynomial basis (with respect to this kernel) is given by the Laguerre
polynomials (in contrast to Hermite polynomials in the Gaussian case) defined as

L(a)
n (u) = (−1)nu1−ae−u dn

dun
(un+a−1e−u). (11)

Remark 4 Note that the definition of the Laguerre polynomials on Eq. 11 is slightly
different from the usual one, i.e., the one based on Rodrigues’ formula

L̃(a)
n = u−aex

n!
dn

dun

(
e−xxn+a

)
,

but it is easy to check that

L(a)
n (u) = n!(−1)nL̃(a−1)

n .
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From the orthogonality condition (see, for example, Jackson 1941 p. 184),
∫ +∞

0

xa−1e−x

Γ (a)
L(a)

n (x)L(a)
m (x)dx =

{
n!Γ (a+n)

Γ (a)
, n = m,

0, n �= m

and using the fact that fU can be written in the form of Eq. 10 we find that

An = 
(a)

n!Γ (a + n)

∫ +∞

0
fU(x)L(a)

n (x)dx. (12)

Then, using the characterization of An in Eq. 12 and the fact that E[U ] = V ar[U ] = a

we can see that

A0 =
∫ +∞

0
fU(x)L

(a)
0 (x)dx =

∫ +∞

0
fU(x)dx = 1,

A1 =
∫ +∞

1
fU(x)L

(a)
1 (x)dx =

∫ +∞

0
fU(x)(z − a)dx = 0,

A2 =
∫ +∞

1
fU(x)L

(a)
2 (x)dx =

∫ +∞

0
fU(x)(z2 − 2(a + 1)z + (a + 1)a)dx = 0.

Similar but lengthier calculations show that for μn = E
[
(U − E[U ])n], n = 3, 4,

A3 = Γ (a)

3!Γ (a + 3)
(μ3 − 2a), (13)

A4 = Γ (a)

4!Γ (a + 4)
(μ4 − 12μ3 − 3a2 + 18a). (14)

Therefore, matching the first four moments, the density of the original random variable Z̃

can be approximated as

fZ̃(z) = bfU (u) ≈ b
ua−1e−u

Γ (a)

[
1 + A3L

(a)
3 (u) + A4L

(a)
4 (u)

]
,

where u = bz, A3 and A4 are given, respectively, by Eqs. 13 and 14 and the Laguerre
polynomials can be found in Table 3. For additional details on the Gamma expansion we
refer the reader to Bowers (1966).

Since this expansion does not ensure positivity of the density at all points (it can be nega-
tive for particular choices of skewness and kurtosis) we will adopt the approach discussed in
Jondeau and Rockinger (2001) for the Gauss-Hermite Gramm Charlier case modified to the
Gamma-Laguerre setting. To find the region on the (μ3, μ4)-plane where fU(u) is positive
for all u we will first find the region where fU(u) = 0, i.e.,

ua−1e−u

Γ (a)

(
1 + A3L

(a)
3 (u) + A4L

(a)
4 (u)

) = 0. (15)

Table 3 The first five Laguerre polynomials

L
(a)
0 (u) = 1

L
(a)
1 (u) = u − a

L
(a)
2 (u) = u2 − 2(a + 1)u + (a + 1)a

L
(a)
3 (u) = u3 − 3(a + 2)u2 + 3(a + 2)(a + 1)u − (a + 2)(a + 1)a

L
(a)
4 (u) = u4 − 4(a + 3)u3 + 6(a + 3)(a + 2)u2 − 4(a + 3)(a + 2)(a + 1)u + (a + 3)(a + 2)(a + 1)a.
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For a fixed value u, we now want to find the set (μ3, μ4) as a function of u such that
Eq. 15 remains zero for small variations on u. This set is given by (μ3, μ4) such that

d

du

[
ua−1e−u


(a)

(
1 + A3L

(a)
3 (u) + A4L

(a)
4 (u)

)
]

= 0. (16)

We can then rewrite (15) and (16) as the following system of algebraic equations
{

μ3B1(u) + μ4B2(u) + B3(u) = 0
μ3B

′
1(u) + μ4B

′
2(u) + B ′

3(u) = 0,

where

B1(u) = ua−1e−u

Γ (a)

(
Γ (a)

3!Γ (a + 3)
L

(a)
3 (u) − 12

Γ (a)

4!Γ (a + 4)
L

(a)
4 (u)

)

;

B2(u) = ua−1e−u

Γ (a)

Γ (a)

4!Γ (a + 4)
L

(a)
4 (u);

B3(u) = ua−1e−u

Γ (a)

(

1 − 2a
Γ (a)

3!Γ (a + 3)
L

(a)
3 (u)+

(
−3a2+18a

) Γ (a)

4!Γ (a + 4)
L

(a)
4 (u)

)

;

B ′
1(u) =

(
(a − 1)u−1 − 1

)
B1(u) + ua−1e−u

Γ (a)

(
Γ (a)

3!Γ (a + 3)

dL
(a)
3

du
(u)

−12
Γ (a)

4!Γ (a + 4)

dL
(a)
4

du
(u)

)

;

B ′
2(u) =

(
(a − 1)u−1 − 1

)
B2(u) + ua−1e−u

Γ (a)

(
Γ (a)

4!Γ (a + 4)

dL
(a)
4

du
(u)

)

;

B ′
3(u) =

(
(a − 1)u−1 − 1

)
B3(u) + ua−1e−u

Γ (a)

(

−2a
Γ (a)

3!Γ (a + 3)

dL
(a)
3

du
(u)

+
(
−3a2 + 18a

) Γ (a)

4!Γ (a + 4)

dL
(a)
4

du
(u)

)

;

dL
(a)
3

du
(u) = 3u2 − 6(a + 2)u + 3(a + 2)(a + 1);

dL
(a)
4

du
(u) = 4u3 − 12(a + 3)u2 + 12(a + 3)(a + 2)u − 4(a + 3)(a + 2)(a + 1).

Therefore, one can solve this system to show that the curve where the approximation will
stay positive for all u is given by:

⎧
⎨

⎩
μ4(u) =

(
B ′

1B3
B1

− B ′
3

) (
B ′

2 − B ′
1B2
B1

)−1

μ3(u) = − 1
B1

(μ4(u)B2 + B3)
, for u ∈ [0,+∞). (17)

As an illustration, Fig. 8 presents (on the left) the histogram of the loss process Z =∑N
n=1Xn for X ∼ LN(μ = 1, σ = 0.8) and N ∼ Poi(λN = 2) and in gray the Gamma

approximation using the first four moments of Z. On the right it is presented the graph of the
region where the density is positive for all values of u, given by Eq. 17. The grey area was
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Fig. 8 (Left) Histogram of the loss process Z = ∑N
n=1Xn for X ∼ LN(μ = 1, σ = 0.8) and N ∼

Poi(λN = 2) and in red the Gamma approximation using the first four moments of Z. (Right) The graph of
the region where the density is positive for all values of z

calculated numerically, for all combinations in a fine grid on the plane (μ3, μ4) it was tested
if the density became negative in some point z. Grey points indicate the density is strictly
positive. The dot indicates the third and fourth moments in the Log-Normal example and
since it lies inside the positivity area we can ensure this approximation is strictly positive
for all values of z.

If the the third and fourth moments of the chosen model lied outside the permitted area
one could chose μ̂3 and μ̂4 as the estimates that minimize some constrained optimiza-
tion problem, for instance, the Maximum Likelihood Estimator (using fU(u;μ3, μ4) =
ua−1e−u


(a)

[
1 + A3L

(a)
3 (u) + A4L

(a)
4 (u)

]
as the likelihood). The constrained region is clearly

given by a segment of the curve in Eq. 17 and the endpoints can be found using a root-search
method checking for which values of u the red curve in Fig. 8 touches the grey area.

Given the approximation of fU , and consequently of fZ̃ , one can easily calculate the
optimal multiple stopping rule, since E[Z̃] is assumed to be known and E[min{c1 + Z̃, c2}]
can be calculated as follows.

Lemma 5 If G ∼ Gamma(a, 1), i.e., fG(x) = xa−1e−x


(a)
then, similarly to Lemma 4 the

following property holds

xfG(x; a, 1) ≡ afG(x; a + 1, 1). (18)

Using this notation we can rewrite the approximation of Z̃ as

fZ̃(z) ≈ fG(bz; a, 1)A∗
1 + fG(bz; a + 1, 1)A∗

2 + fG(bz; a + 2, 1)A∗
3

+ fG(bz; a + 3, 1)A∗
4 + fG(bz; a + 4, 1)A∗

5,
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where A∗
1 =

(
1 − Γ (a+3)

Γ (a)
A3 + Γ (a+4)

Γ (a)
A4

)
b, A∗

2 =
(

3 Γ (a+3)
Γ (a)

A3 − 4 Γ (a+4)
Γ (a)

A4

)
b,

A∗
3 =

(

−3
Γ (a + 3)

Γ (a)
A3 + 6

Γ (a + 4)

Γ (a)
A4

)

b, A∗
4 =

(
Γ (a + 3)

Γ (a)
A3 − 4

Γ (a + 4)

Γ (a)
A4

)

b,

A∗
5 =

(
Γ (a + 4)

Γ (a)
A4

)

b.

Then, we can calculate the other main ingredient of Theorem 1, namely

E[min{c1 + Z̃, c2}] =
∫ +∞

0
min{c1 + z, c2}fZ̃(z)dz

=
∫ +∞

0

(
(c1 + z)I{c1+z<c2} + c2I{c1+z≥c2}

)
fZ̃(z)dz

=
∫ c2−c1

0
zfZ̃(z)dz + c1

∫ c2−c1

0
fZ̃(z)dz + c2

∫ +∞

c2−c1

fZ̃(z)dz

= a

5∑

k=1

FG(b(c2 − c1); a + k, 1)A∗
k

+c1

5∑

k=1

FG(b(c2 − c1); a − 1 + k, 1)A∗
k

+c2

5∑

k=1

FG(b(c2 − c1); a − 1 + k, 1)A∗
k .

8 Conclusion and Final Remarks

In this paper we studied some properties of an insurance product where its owner has the
right to choose which of the next k years the issuer should mitigate its annual losses. For
two different forms of mitigation we presented as closed form solutions for the exercising
strategy that minimized (on average) the sum of all annual losses in the next T years. This
model assumed a “moderate tail” for the severity of the losses the owner incurs, namely a
Poisson-Inverse Gaussian LDA model.

Although it is assumed the company already holds the proposed contract, the company
can use the analysis presented on Fig. 6 as a proxy for the price of the insurance product. The
value, from the company’s point of view, of the insurance product should be the expected
difference (under the natural probability) of the losses that would be incurred without the
product and the losses incurred using the product in the most profitable way (for the buyer),

E

⎡

⎢
⎣

L∑

t=1

Z(t) −
⎛

⎜
⎝

L∑

t=1
t /∈{τ1,...,τk }

Z(t) +
∑l

j=1
Z̃(τj )

⎞

⎟
⎠

⎤

⎥
⎦ .

It must also be said this price does not include the premium asked by the insurance company
and also does not take into consideration the fact that external insurance companies will not
have access to the models used by the company but it can still be a valuable proxy. Also, the
impact of the proposed products on the capital requirements and the effect of the inclusion
of deductibles require further research in future studies.
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An alternative to the results presented in Section 7 can involve the use of a Monte Carlo
method. If there exists a mechanism to sample from the severity distribution one can easily
create a sample of the insured process Z̃ and use this sample to calculate all the neces-
sary expectations on Theorem 1. The advantage of this approach is that one can handle
any combination of severity distribution and insurance policy, but it can be extremely time
consuming and the variance of the estimative can be prohibitive. It is important to note the
sampling of the severity can be made offline, i.e., the same sample should be used to calcu-
late all the integrals. Another alternative to solve the optimal multiple stopping problem is
the usage of an extended version of the so-called Least-Square Monte Carlo method, first
presented in Longstaff and Schwartz (2001) and extended to the multiple stopping scenario
in Bender and Schoenmakers (2006) (see also Bender et al. 2013 for recent related work).

Regarding the results presented in Theorems 4 and 2 the truncation point for the infinite
sums can be chosen to be much larger than the expected number of losses (parameter λN ),
since the summands are composed by a p.m.f. of a Poisson r.v. (which presents exponential
decay) and a bounded term (difference of c.d.f.’s times constants).
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Appendix: Proofs

Proof (of Proposition 1)

FZ̃(z) = P[Z̃ ≤ z]
= P[max{Z − ALP, 0} ≤ z]
= FZ(z + ALP)I{z≥0}(z)

=
∞∑

m=1

pmFSm(z + ALP) + p0

=
∞∑

m=1

pmFIG(z + ALP ; mμ, m2λ) + p0

The p.d.f. easily follows from the derivation of FZ̃(z) with respect to z but it is important
to note that fZ̃ is a continuous density with discrete mass at z = 0, i.e.,

fZ̃(z) =
+∞∑

m=1

{
fIG(z + ALP ; mμ,m2λ)pm

}
I{z>0}

+
{

p0 +
+∞∑

m=1

FIG(ALP ; mμ,m2λ)pm

︸ ︷︷ ︸
P[Z̃=0]

}
I{z=0}

http://creativecommons.org/licenses/by/4.0/
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Proof (of Theorem 2) As in Theorem 4, to calculate the optimal rule we only need to cal-
culate E[W ] and E[max{−c1 + W, −c2}], for 0 < c1 < c2. Given the expression (7) for
the density of Z̃ we can calculate E[W ] as follows

E[Z̃] =
∫ +∞

0
z

+∞∑

m=1

fIG(z + ALP ; mμ, m2λ)pmdz

(from Lemma 2) =
+∞∑

m=1

pm

∫ +∞

0
zfGIG(z + ALP ; λ/μ2,m2λ, −1/2)dz

(change of variables) =
+∞∑

m=1

pm

∫ +∞

ALP

(w − ALP)fGIG(w; λ/μ2, m2λ,−1/2) dw

(from Lemma 4) =
+∞∑

m=1

pm

(
mμFGIG(ALP ; λ/μ2,m2λ, 1/2)

− ALPFGIG(ALP ; λ/μ2, m2λ, −1/2)
)

And then we use the fact that E[W ] = −E[Z̃].
For the second term we have that E[max{−c1 + W, −c2}] = (−1)E[min{c1 + Z̃, c2}]

and

E[min{c1 + Z̃, c2}] =
∫ +∞

0
min{c1 + z, c2}fZ̃(z)dz

=
+∞∑

m=1

pm

∫ +∞

0
min{c1 + z, c2}fIG(z + ALP ; mμ, m2λ)dz

+ min{c1 + 0, c2}
{
p0 +

+∞∑

m=1

FIG(ALP ; mμ, m2λ)pm

}

=
+∞∑

m=1

pm

[∫ +∞

ALP

min{c1+w−ALP, c2}fIG(w; mμ, m2λ)dw

]

+c1C0

=
+∞∑

m=1

pm

[∫ c2−c1+ALP

ALP

(c1 + w − ALP)fIG(w; mμ, m2λ)dw

+
∫ +∞

c2−c1+ALP

c2fIG(w; mμ, m2λ)dw

]

+ c1C0

=
+∞∑

m=1

pm

[(

mμ
(
FGIG(c2 − c1 + ALP ; λ/μ2, m2λ, 1/2)

−FGIG(ALP ; λ/μ2, m2λ, 1/2)
)

+(c1 − ALP)
(
FGIG(c2 − c1 + ALP ; λ/μ2, m2λ, −1/2)

−FGIG(ALP ; λ/μ2, m2λ, −1/2)
))

+c2FGIG(c2 − c1 + ALP ; λ/μ2, m2λ, −1/2)

]

+ c1C0.
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Proof (of Proposition 2) For w ≥ ALP , we clearly have FW (w) = P[min{ALP, Z} ≤
w] = 1. For 0 ≤ w < ALP ,

FW (w) = P[W ≤ w]
= P[min{ALP, Z} ≤ w]
= P[min{ALP, Z} ≤ w | Z ≤ ALP ] P[Z ≤ ALP ] + P[min{ALP, Z}
≤ w | Z > ALP ] P[Z > ALP ]
= P[Z ≤ w | Z≤ALP ] P[Z ≤ ALP ]+P[ALP ≤ w | Z > ALP ] P[Z > ALP ]
= P[Z ≤ w, Z ≤ ALP ] + I{w≥ALP }(w)FZ(ALP)

= P[Z ≤ min{w, ALP }] + I{w≥ALP }(w)FZ(ALP).

Since we assumed w < ALP , we have that min{w, ALP } = w and the indicator func-
tion on the second term is always equal to zero leading to the following expression for an
arbitrary w ≥:

FW (w) = I{0≤w<ALP }(w)FZ(w) + I{w≥ALP }(w)

= I{0≤w<ALP }(w)
{
p0 +

∞∑

m=1

FSm(w)pm

}
+ I{w≥ALP }(w)

= I{0≤w<ALP }(w)
{
p0 +

∞∑

m=1

FIG(w; mμ, m2λ)pm

}
+ I{w≥ALP }(w).

Consequently, the pdf of the gain is given by

fW (w) =
N∑

m=1

{(
FSm(ALP)I{w=ALP } + fSm(w)I{0<w<ALP }

)
pm

}
+ p0I{w=0}.

�

Proof (Theorem 3) For 0 < c1 < c2, the quantity of interest can be calculated as

E[max{c1 + W, c2}] =
∫ +∞

0
max{c1 + w, c2}fW (w)dw

=
+∞∑

m=1

pm

{
FSm(ALP) max{c1 + ALP, c2}

+
∫ ALP

c2−c1

(c1 + w)fSm(w)dw +
∫ min{c2−c1, ALP }

0
c2fSm(w)dw

}
+ p0c2

=
+∞∑

m=1

pm

{
FSm(ALP) max{c1 + ALP, c2}

+c1(FSm(ALP) − FSm(c2 − c1)) + mμ
(
FGIG(ALP ; λ/μ2, m2λ, 1/2)

−FGIG(c2−c1; λ/μ2, m2λ, 1/2)
)+c2FSm(min{c2−c1, ALP })

}
+p0c2
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Proof (of Theorem 4) It is clear from Theorem 1 that we only need to calculate two terms,
namely E[W ] and E[max{−c1 + W, −c2}], for 0 < c1 < c2. The first term can be derived
by a simple application of the Tower Property:

E[W ] = −E[Z̃] = −E

[
E[Z̃|Ñ]

]
= −E[Ñ ] E[X̃] = −λÑμ.

For the second term, first note that E[max{−c1 + W, −c2}] = (−1)E[min{c1 + Z̃, c2}]
and it then follows that, for 0 < c1 < c2,

E[min{c1 + Z̃, c2}] =
∫ +∞

0
min{c1 + z, c2}fZ̃(z)dz + min{c1 + 0, c2}Pr[Ñ = 0]

=
∫ +∞

0

(
(c1 + z)I{c1+z<c2} + c2I{c1+z≥c2}

)
fZ̃(z)dz + c1Pr[Ñ = 0]

=
∫ c2−c1

0
zfZ̃(z)dz+c1

∫ c2−c1

0
fZ̃(z)dz + c2

∫ +∞

c2−c1

fZ̃(z)dz+c1Pr[Ñ =0]

=
+∞∑

n=1

Pr[Ñ = n]
[∫ c2−c1

0
zfS̃n

(z)dz + c1

∫ c2−c1

0
fS̃n

(z)dz

+c2

∫ +∞

c2−c1

fS̃n
(z)dz

]

+ c1Pr[Ñ = 0]

(from Lemma 2) =
+∞∑

n=1

Pr[Ñ = n]
[
FGIG(c2 − c1; λ/μ2, n2λ, 1/2)nμ

+c1FGIG(c2 − c1; λ/μ2, n2λ, −1/2)

+c2FGIG(c2 − c1; λ/μ2, n2λ, −1/2)
]

+ c1Pr[Ñ = 0]

(from Lemma 4) =
+∞∑

n=1

Pr[Ñ = n]
[
FGIG(c2 − c1; λ/μ2, n2λ, 1/2)nμ

+(c1 − c2)FGIG(c2 − c1; λ/μ2, n2λ, −1/2) + c2

]
+ c1Pr[Ñ = 0].

Note that, for notational ease, fZ̃ must be understood as the absolutely continuous part of
the density of Z̃.
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