226 research outputs found

    Deep residual networks for quantification of muscle fiber orientation and curvature from ultrasound images

    Get PDF
    This paper concerns fully automatic and objective measurement of human skeletal muscle fiber orientation directly from standard b-mode ultrasound images using deep residual (ResNet) and convolutional neural networks (CNN). Fiber orientation and length is related with active and passive states of force production within muscle. There is currently no non-invasive way to measure force directly from muscle. Measurement of forces and other contractile parameters like muscle length change, thickness, and tendon length is not only important for understanding healthy muscle, but such information has contributed to understanding, diagnosis, monitoring, targeting and treatment of diseases ranging from myositis to stroke and motor neurone disease (MND). We applied well established deep learning methods to ultrasound data recorded from 19 healthy participants (5 female, ages: 30 ± 7.7) and achieved state of the art accuracy in predicting fiber orientation directly from ultrasound images of the calf muscles. First we used a previously developed segmentation technique to extract a region of interest within the gastrocnemius muscle. Then we asked an expert to annotate the main line of fiber orientation in 4 × 4 partitions of 400 normalized images. A linear model was then applied to the annotations to regulate and recover the orientation field for each image. Then we applied a CNN and a ResNet to predict the fiber orientation in each image. With leave one participant out cross-validation and dropout as a regulariser, we were able to demonstrate state of the art performance, recovering the fiber orientation with an average error of just 2°

    Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females

    Get PDF
    Neuromuscular performance capabilities, including those measured by evoked responses, may be adversely affected by fatigue; however, the capability of the neuromuscular system to initiate muscle force rapidly under these circumstances is yet to be established. Sex-differences in the acute responses of neuromuscular performance to exercise stress may be linked to evidence that females are much more vulnerable to ACL injury than males. Optimal functioning of the knee flexors is paramount to the dynamic stabilisation of the knee joint, therefore the aim of this investigation was to examine the effects of acute maximal intensity fatiguing exercise on the voluntary and magnetically-evoked electromechanical delay in the knee flexors of males and females. Knee flexor volitional and magnetically-evoked neuromuscular performance was assessed in seven male and nine females prior to and immediately after: (i) an intervention condition comprising a fatigue trial of 30-seconds maximal static exercise of the knee flexors, (ii) a control condition consisting of no exercise. The results showed that the fatigue intervention was associated with a substantive reduction in volitional peak force (PFV) that was greater in males compared to females (15.0%, 10.2%, respectively, p < 0.01) and impairment to volitional electromechanical delay (EMDV) in females exclusively (19.3%, p < 0.05). Similar improvements in magnetically-evoked electromechanical delay in males and females following fatigue (21%, p < 0.001), however, may suggest a vital facilitatory mechanism to overcome the effects of impaired voluntary capabilities, and a faster neuromuscular response that can be deployed during critical times to protect the joint system

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis

    On the Implications of a Sex Difference in the Reaction Times of Sprinters at the Beijing Olympics

    Get PDF
    Elite sprinters offer insights into the fastest whole body auditory reaction times. When, however, is a reaction so fast that it represents a false start? Currently, a false start is awarded if an athlete increases the force on their starting block above a given threshold before 100 ms has elapsed after the starting gun. To test the hypothesis that the fastest valid reaction times of sprinters really is 100 ms and that no sex difference exists in that time, we analyzed the fastest reaction times achieved by each of the 425 male and female sprinters who competed at the 2008 Beijing Olympics. After power transformation of the skewed data, a fixed effects ANOVA was used to analyze the effects of sex, race, round and lane position. The lower bounds of the 95, 99 and 99.9% confidence intervals were then calculated and back transformed. The mean fastest reaction time recorded by men was significantly faster than women (p<0.001). At the 99.9% confidence level, neither men nor women can react in 100 ms, but they can react in as little as 109 ms and 121 ms, respectively. However, that sex difference in reaction time is likely an artifact caused by using the same force threshold in women as men, and it permits a woman to false start by up to 21 ms without penalty. We estimate that female sprinters would have similar reaction times to male sprinters if the force threshold used at Beijing was lowered by 22% in order to account for their lesser muscle strength

    Comparison of Mental Toughness and Power Test Performances in High-Level Kickboxers by Competitive Success

    Get PDF
    Background Kickboxing is a high-intensity intermittent striking combat sport, which is characterized by complex skills and tactical key actions with short duration. Objectives The present study compared and verified the relationship between mental toughness (MT), countermovement jump (CMJ) and medicine ball throw (MBT) power tests by outcomes of high-level kickboxers during National Championship. Materials and Methods Thirty two high-level male kickboxers (winner = 16 and loser = 16: 21.2 ± 3.1 years, 1.73 ± 0.07 m, and 70.2 ± 9.4 kg) were analyzed using the CMJ, MBT tests and sports mental toughness questionnaire (SMTQ; based in confidence, constancy and control subscales), before the fights of the 2015 national championship (16 bouts). In statistical analysis, Mann-Withney test and a multiple linear regression were used to compare groups and to observe relationships, respectively, P ≤ 0.05. Results The present results showed significant differences between losers vs. winners, respectively, of total MT (7(7;8) vs. 11(10.2;11), confidence (3(3;3) vs. 4(4;4)), constancy (2(2;2) vs. 3(3;3)), control (2(2;3) vs. 4(4;4)) subscales and MBT (4.1(4;4.3) vs. 4.6(4.4;4.8)). The multiple linear regression showed a strong associations between MT results and outcome (r = 0.89), MBT (r = 0.84) and CMJ (r = 0.73). Conclusions The findings suggest that MT will be more predictive of performance in those sports and in the outcome of competition.Ministry of Higher Teaching and Scientific Research, Tunisi

    The effect of massage on localized lumbar muscle fatigue

    Get PDF
    BACKGROUND: There is not enough evidence to support the efficacy of massage for muscle fatigue despite wide utilization of the modality in various clinical settings. This study investigated the influence of massage application on localized back muscle fatigue. METHODS: Twenty-nine healthy subjects participated in two experimental sessions (massage and rest conditions). On each test day, subjects were asked to lie in the prone position on a treatment table and perform sustained back extension for 90 seconds. Subjects then either received massage on the lumbar region or rested for a 5 minute duration, then repeated the back extension movement. The median frequency (MDF), mean power frequency (MNF), and root mean square (RMS) amplitude of electromyographic signals during the 90 second sustained lumbar muscle contraction were analyzed. The subjective feeling of fatigue was then evaluated using the Visual Analogue Scale (VAS). RESULTS: MDF and MNF significantly declined with time under all conditions. There was no significant difference in MDF, MNF or RMS value change between before and after massage, or between rest and massage conditions. There was a significant increase in fatigue VAS at the end of the 2(nd) back extension with rest condition. There was a significant difference in fatigue VAS change between massage and rest condition. CONCLUSIONS: A significant difference was observed between massage and rest condition on VAS for muscle fatigue. On EMG analysis, there were no significant differences to conclude that massage stimulation influenced the myoelectrical muscle fatigue, which is associated with metabolic and electrical changes

    A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats.

    Get PDF
    Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system

    Moderate energy restriction with high protein diet results in healthier outcome in women

    Get PDF
    BACKGROUND: The present study compares two different weight reduction regimens both with a moderately high protein intake on body composition, serum hormone concentration and strength performance in non-competitive female athletes. METHODS: Fifteen normal weighted women involved in recreational resistance training and aerobic training were recruited for the study (age 28.5 ± 6.3 yr, height 167.0 ± 7.0 cm, body mass 66.3 ± 4.2 kg, body mass index 23.8 ± 1.8, mean ± SD). They were randomized into two groups. The 1 KG group (n = 8; energy deficit 1100 kcal/day) was supervised to reduce body weight by 1 kg per week and the 0.5 KG group (n = 7; energy deficit 550 kcal/day) by 0.5 kg per week, respectively. In both groups protein intake was kept at least 1.4 g/kg body weight/day and the weight reduction lasted four weeks. At the beginning of the study the energy need was calculated using food and training diaries. The same measurements were done before and after the 4-week weight reduction period including total body composition (DXA), serum hormone concentrations, jumping ability and strength measurements RESULTS: During the 4-week weight reduction period there were no changes in lean body mass and bone mass, but total body mass, fat mass and fat percentage decreased significantly in both groups. The changes were greater in the 1 KG group than in the 0.5 KG group in total body mass (p < 0.001), fat mass (p < 0.001) and fat percentage (p < 0.01). Serum testosterone concentration decreased significantly from 1.8 ± 1.0 to 1.4 ± 0.9 nmol/l (p < 0.01) in 1 KG and the change was greater in 1 KG (30%, p < 0.001) than in 0.5 KG (3%). On the other hand, SHBG increased significantly in 1 KG from 63.4 ± 17.7 to 82.4 ± 33.0 nmol/l (p < 0.05) during the weight reducing regimen. After the 4-week period there were no changes in strength performance in 0.5 KG group, however in 1 KG maximal strength in bench press decreased (p < 0.05) while endurance strength in squat and counter movement jump improved (p < 0.05) CONCLUSION: It is concluded that a weight reduction by 0.5 kg per week with ~1.4 g protein/kg body weight/day can be recommended to normal weighted, physically active women instead of a larger (e.g. 1 kg per week) weight reduction because the latter may lead to a catabolic state. Vertical jumping performance is improved when fat mass and body weight decrease. Thus a moderate weight reduction prior to a major event could be considered beneficial for normal built athletes in jumping events.peerReviewe
    corecore