23 research outputs found

    Is the Lambda CDM Model Consistent with Observations of Large-Scale Structure?

    Full text link
    The claim that large-scale structure data independently prefers the Lambda Cold Dark Matter model is a myth. However, an updated compilation of large-scale structure observations cannot rule out Lambda CDM at 95% confidence. We explore the possibility of improving the model by adding Hot Dark Matter but the fit becomes worse; this allows us to set limits on the neutrino mass.Comment: To appear in Proceedings of "Sources and Detection of Dark Matter/Energy in the Universe", ed. D. B. Cline. 6 pages, including 2 color figure

    Probing the correlations in composite signals

    Full text link
    The technique of degree of randomness is used to model the correlations in sequences containing various subsignals and noise. Kolmogorov stochasticity parameter enables to quantify the randomness in number sequences and hence appears as an efficient tool to distinguish the signals. Numerical experiments for a broad class of composite signals of regular and random properties enable to obtain the qualitative and quantitative criteria for the behavior of the descriptor depending on the input parameters typical to astrophysical signals.Comment: Eur.Phys.J. to appear, 6 pages, 6 figure

    The XMM cluster survey: Testing chameleon gravity using the profiles of clusters

    Get PDF
    The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas filling the potential wells of galaxy clusters. However, it would not influence the clusters weak lensing signal. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, z = 0.02). Here we apply the technique to the stacked profiles of 58 clusters at higher redshifts (0.1 R0| R0| on cosmological scales. We hope to improve this constraint in future by extending the study to hundreds of clusters using data from the Dark Energy Survey

    The XMM Cluster Survey: An independent demonstration of the fidelity of the eFEDS galaxy cluster data products and implications for future studies

    Get PDF
    We present the first comparison between properties of clusters of galaxies detected by the eROSITA Final Equatorial-Depth Survey (eFEDS) and the XMM Cluster Survey (XCS). We have compared, in an ensemble fashion, properties from the eFEDS X-ray cluster catalogue with those from the Ultimate XMM eXtragaLactic (XXL) survey project (XXL-100-GC). We find the redshift and temperature (TX) distributions to be similar, with a larger proportion of clusters above 4 keV in the XXL-100-GC sample; fractional temperature uncertainties are significantly larger in eFEDS compared to XXL. We find 62 eFEDS cluster candidates with XMM data (eFEDS-XMM sample); 10 do not have good enough XMM data to confirm or deny, 11 are classed as sample contaminants, and 4 have their X-ray flux contaminated by another source. The majority of eFEDS-XMM sources have longer XMM exposures than eFEDS, and most eFEDS positions are within 100 kpc of XCS positions. Our eFEDS-XCS sample of 37 clusters is used to calculate minimum sample contamination fractions of ∼18 and ∼9 per cent in the eFEDS X-ray and optically confirmed samples, respectively, in general agreement with eFEDS findings. We directly compare 29 X-ray luminosities (LX) measured by eFEDS and XCS, finding excellent agreement. Eight clusters have a TX measured by XCS and eFEDS, and we find that XMM temperatures are 25 ± 9 per cent larger than their eROSITA counterparts. Finally, we construct LX-TX scaling relations based on eFEDS and XCS measurements, which are in tension; the tension is decreased when we measure a third scaling relation with calibrated XCS temperatures

    The XMM Cluster Survey: New evidence for the 3.5-keV feature in clusters is inconsistent with a dark matter origin

    Get PDF
    There have been several reports of a detection of an unexplained excess of X-ray emission at \simeq3.5 keV in astrophysical systems. One interpretation of this excess is the decay of sterile neutrino dark matter. The most influential study to date analysed 73 clusters observed by the XMM-Newton satellite. We explore evidence for a â 3.5-keV excess in the XMM-PN spectra of 117 redMaPPer galaxy clusters (0.1 < z < 0.6). In our analysis of individual spectra, we identify three systems with an excess of flux at \simeq3.5 keV. In one case (XCS J0003.3+0204), this excess may result from a discrete emission line. None of these systems are the most dark matter dominated in our sample. We group the remaining 114 clusters into four temperature (TX) bins to search for an increase in â 3.5-keV flux excess with TX-a reliable tracer of halo mass. However, we do not find evidence of a significant excess in flux at â 3.5 keV in any TX bins. To maximize sensitivity to a potentially weak dark matter decay feature at â 3.5 keV, we jointly fit 114 clusters. Again, no significant excess is found at â 3.5 keV. We estimate the upper limit of an undetected emission line at â 3.5 keV to be 2.41 × 10-6 photons cm-2 s-1, corresponding to a mixing angle of sin 2(2θ) = 4.4 × 10-11, lower than previous estimates from cluster studies. We conclude that a flux excess at â 3.5 keV is not a ubiquitous feature in clusters and therefore unlikely to originate from sterile neutrino dark matter decay. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

    The XMM Cluster Survey analysis of the SDSS DR8 redMaPPer catalogue: implications for scatter, selection bias, and isotropy in cluster scaling relations

    Get PDF
    In this paper, we present the X-ray analysis of Sloan Digital Sky Survey DR8 redMaPPer (SDSSRM) clusters using data products from the XMM Cluster Survey (XCS). In total, 1189 SDSSRM clusters fall within the XMM-Newton footprint. This has yielded 456 confirmed detections accompanied by X-ray luminosity (LX) measurements. Of these clusters, 381 have an associated X-ray temperature measurement (TX). This represents one of the largest samples of coherently derived cluster TX values to date. Our analysis of the X-ray observable to richness scaling relations has demonstrated that scatter in the TX-λ relation is roughly a third of that in the LX-λ relation, and that the LX-λ scatter is intrinsic, i.e. will not be significantly reduced with larger sample sizes. Analysis of the scaling relation between LX and TX has shown that the fits are sensitive to the selection method of the sample, i.e. whether the sample is made up of clusters detected 'serendipitously' compared to those deliberately targeted by XMM. These differences are also seen in the LX-λ relation and, to a lesser extent, in the TX-λ relation. Exclusion of the emission from the cluster core does not make a significant impact on the findings. A combination of selection biases is a likely, but yet unproven, reason for these differences. Finally, we have also used our data to probe recent claims of anisotropy in the LX-TX relation across the sky. We find no evidence of anistropy, but stress this may be masked in our analysis by the incomplete declination coverage of the SDSS

    Dark Energy Surveyed Year 1 results: calibration of cluster mis-centring in the redMaPPer catalogues

    Get PDF
    The centre determination of a galaxy cluster from an optical cluster finding algorithm can be offset from theoretical prescriptions or N-body definitions of its host halo centre. These offsets impact the recovered cluster statistics, affecting both richness measurements and the weak lensing shear profile around the clusters. This paper models the centring performance of the redMaPPer cluster finding algorithm using archival X-ray observations of redMaPPer selected clusters. Assuming the X-ray emission peaks as the fiducial halo centres, and through analysing their offsets to the redMaPPer centres, we find that ∼75 ± 8 per cent of the redMaPPer clusters are well centred and the mis-centred offset follows a Gamma distribution in normalized, projected distance. These mis-centring offsets cause a systematic underestimation of cluster richness relative to the well-centred clusters, for which we propose a descriptive model. Our results enable the DES Y1 cluster cosmology analysis by characterizing the necessary corrections to both the weak lensing and richness abundance functions of the DES Y1 redMaPPer cluster catalogue

    Stellar mass as a galaxy cluster mass proxy: application to the Dark Energy Survey redMaPPer clusters

    Get PDF
    We introduce a galaxy cluster mass observable, μ⋆, based on the stellar masses of cluster members, and we present results for the Dark Energy Survey (DES) Year 1 (Y1) observations. Stellar masses are computed using a Bayesian model averaging method, and are validated for DES data using simulations and COSMOS data. We show that μ⋆ works as a promising mass proxy by comparing our predictions to X-ray measurements. We measure the X-ray temperature–μ_{⋆} relation for a total of 129 clusters matched between the wide-field DES Y1 redMaPPer catalogue and Chandra and XMM archival observations, spanning the redshift range 0.1 < z < 0.7. For a scaling relation that is linear in logarithmic space, we find a slope of α = 0.488 ± 0.043 and a scatter in the X-ray temperature at fixed μ_{*} of σ1nT_{x}|μ_{*} = 0.266_{-0.020}^{+0.019} for the joint sample. By using the halo mass scaling relations of the X-ray temperature from the Weighing the Giants program, we further derive the μ⋆-conditioned scatter in mass, finding σ1nM|μ_{*} = 0.26_{-0.10}^{+0.15}. These results are competitive with well-established cluster mass proxies used for cosmological analyses, showing that μ_{⋆} can be used as a reliable and physically motivated mass proxy to derive cosmological constraints

    The XMM cluster survey: exploring scaling relations and completeness of the dark energy survey year 3 redMaPPer cluster catalogue

    Get PDF
    We cross-match and compare characteristics of galaxy clusters identified in observations from two sky surveys using two completely different techniques. One sample is optically selected from the analysis of 3 years of Dark Energy Survey observations using the redMaPPer cluster detection algorithm. The second is X-ray selected from XMM observations analysed by the XMM Cluster Survey. The samples comprise a total area of 57.4 deg2, bounded by the area of four contiguous XMM survey regions that overlap the DES footprint. We find that the X-ray-selected sample is fully matched with entries in the redMaPPer catalogue, above λ > 20 and within 0.1 <z <0.9. Conversely, only 38 per cent of the redMaPPer catalogue is matched to an X-ray extended source. Next, using 120 optically clusters and 184 X-ray-selected clusters, we investigate the form of the X-ray luminosity-temperature (LX -TX ), luminosity-richness (LX -λ), and temperature-richness (TX -λ) scaling relations. We find that the fitted forms of the LX -TX relations are consistent between the two selection methods and also with other studies in the literature. However, we find tentative evidence for a steepening of the slope of the relation for low richness systems in the X-ray-selected sample. When considering the scaling of richness with X-ray properties, we again find consistency in the relations (i.e. LX -λ and TX -λ) between the optical and X-ray-selected samples. This is contrary to previous similar works that find a significant increase in the scatter of the luminosity scaling relation for X-ray-selected samples compared to optically selected samples
    corecore