669 research outputs found

    Variability of insulin sensitivity during the first 4 days of critical illness

    Get PDF
    1-pageSafe, effective tight glycaemic control (TGC) can improve outcomes in critical care patients, but is difficult to achieve consistently. Insulin sensitivity defines the metabolic balance between insulin concentration and insulin mediated glucose disposal. Hence, variability of insulin sensitivity can cause variable glycaemia. This study investigates the daily evolution of model-based insulin sensitivity level and variability for critical care patients receiving TGC during the first four days of their ICU stay

    SARS-CoV-2 infection and pulmonary tuberculosis in children and adolescents: a case-control study

    Get PDF
    Background The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic has had an impact on the global tuberculosis (TB) epidemic but evidence on the possible interaction between SARS-CoV-2 and TB, especially in children and adolescents, remains limited. We aimed to evaluate the relationship between previous infection with SARS-CoV-2 and the risk of TB in children and adolescents. Methods An unmatched case-control study was conducted using SARS-CoV-2 unvaccinated children and adolescents recruited into two observational TB studies (Teen TB and Umoya), between November 2020 and November 2021, in Cape Town, South Africa. Sixty-four individuals with pulmonary TB (aged < 20 years) and 99 individuals without pulmonary TB (aged < 20 years) were included. Demographics and clinical data were obtained. Serum samples collected at enrolment underwent quantitative SARS-CoV-2 anti-spike immunoglobulin G (IgG) testing using the Abbott SARS-CoV-2 IgG II Quant assay. Odds ratios (ORs) for TB were estimated using unconditional logistic regression. Results There was no statistically significant difference in the odds of having pulmonary TB between those who were SARS-CoV-2 IgG seropositive and those who were seronegative (adjusted OR 0.51; 95% CI: 0.23–1.11; n = 163; p = 0.09). Of those with positive SARS-CoV-2 serology indicating prior infection, baseline IgG titres were higher in individuals with TB compared to those without TB (p = 0.04) and individuals with IgG titres in the highest tertile were more likely to have pulmonary TB compared to those with IgG levels in the lowest tertile (OR: 4.00; 95%CI: 1.13– 14.21; p = 0.03). Conclusions Our study did not find convincing evidence that SARS-CoV-2 seropositivity was associated with subsequent pulmonary TB disease; however, the association between magnitude of SARS-CoV-2 IgG response and pulmonary TB warrants further investigation. Future prospective studies, evaluating the effects of sex, age and puberty on host immune responses to M. tuberculosis and SARS-CoV-2, will also provide more clarity on the interplay between these two infections

    Pandemic flu (H1N1) 2009 and pregnancy

    Full text link

    Pandemic flu (H1N1) 2009 and pregnancy

    Get PDF

    Algorithm and performance of a clinical IMRT beam-angle optimization system

    Full text link
    This paper describes the algorithm and examines the performance of an IMRT beam-angle optimization (BAO) system. In this algorithm successive sets of beam angles are selected from a set of predefined directions using a fast simulated annealing (FSA) algorithm. An IMRT beam-profile optimization is performed on each generated set of beams. The IMRT optimization is accelerated by using a fast dose calculation method that utilizes a precomputed dose kernel. A compact kernel is constructed for each of the predefined beams prior to starting the FSA algorithm. The IMRT optimizations during the BAO are then performed using these kernels in a fast dose calculation engine. This technique allows the IMRT optimization to be performed more than two orders of magnitude faster than a similar optimization that uses a convolution dose calculation engine.Comment: Final version that appeared in Phys. Med. Biol. 48 (2003) 3191-3212. Original EPS figures have been converted to PNG files due to size limi

    Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5 wk of bed rest

    Get PDF
    Background: Physical inactivity is often associated with positive energy balance and fat gain. Objective: We aimed to assess whether energy intake in excess of requirement activates systemic inflammation and antioxidant defenses and accelerates muscle atrophy induced by inactivity. Design: Nineteen healthy male volunteers were studied before and at the end of 5 wk of bed rest. Subjects were allowed to spontaneously adapt to decreased energy requirement (study A, n = 10) or were provided with an activity-matched diet (study B, n = 9). Groups with higher (HEB) or lower (LEB) energy balance were identified according to median values of inactivity-induced changes in fat mass (\u394FM, assessed by bioelectrical impedance analysis). Results: In pooled subjects (n = 19; median \u394FM: 1.4 kg), bed rest-mediated decreases in fat-free mass (bioelectrical impedance analysis) and vastus lateralis thickness (ultrasound imaging) were significantly greater (P &lt; 0.03) in HEBAB (-3.8 \ub1 0.4kg and -0.32 \ub1 0.04 cm, respectively) than in LEBab (-2.3 \ub1 0.5 kg and -0.09 \ub1 0.04 cm, respectively) subjects. In study A (median \u394FM: 1.8 kg), bed rest-mediated increases in plasma leptin, C-reactive protein, and myeloperoxidase were greater (P &lt; 0.04) in HEBA than in LEBA subjects. Bed rest-mediated changes of glutathione synthesis rate in eythrocytes (L-[3,3-2H2]cysteine incorporation) were greater (P = 0.03) in HEBA (from 70 \ub1 19 to 164 \ub1 29%/d) than in LEBA (from 103 \ub1 23 to 84 \ub1 27%/d) subjects. Conclusions: Positive energy balance during inactivity is associated with greater muscle atrophy and with activation of systemic inflammation and of antioxidant defenses. Optimizing caloric intake may be a useful strategy for mitigating muscle loss during period of chronic inactivity
    corecore