1,004 research outputs found
Pforams@microtax: Anew online taxonomic database for planktonic foraminifera
A new relational taxonomic database for planktonic foraminifera (“pforams@mikrotax�) has been constructed and is now freely available online at http://www.mikrotax.org. It represents amajor advance from its predecessor, the CHRONOS online taxonomic database, which has served the research community since 2005. The benefits of the new database to the research and industrial biostratigraphic communities are many, as it will serve as an immediately accessible taxonomic guide and reference for specialists and non-specialists alike by providing access to a wealth of information and images from original authors and from expertswho have inserted recent authoritative updates to planktonic foraminiferal taxonomy, phylogeny and biostratigraphy. The database will be continually updated and used as a guide for training current and future generations of students and professionals who will be able to self-educate on planktonic foraminiferal taxonomy and biostratigraphy. Further investigation of species traditionally included in the Cretaceous genera Heterohelix, Globigerinelloides, Marginotruncana, and Globotruncana is required to exclude the use of polyphyletic morphotaxa. The taxonomy for Paleogene planktonic foraminifera is quite stable following publication of the Paleocene, Eocene, and Oligocene taxonomic atlases, but revisions to the taxonomy and phylogeny of Neogene taxa are needed to incorporate results from genetic sequencing studies and recent biostratigraphic observations
Suppressing Electroweak Precision Observables in 5D Warped Models
We elaborate on a recently proposed mechanism to suppress large contributions
to the electroweak precision observables in five dimensional (5D) warped
models, without the need for an extended 5D gauge sector. The main ingredient
is a modification of the AdS metric in the vicinity of the infrared (IR) brane
corresponding to a strong deviation from conformality in the IR of the 4D
holographic dual. We compute the general low energy effective theory of the 5D
warped Standard Model, emphasizing additional IR contributions to the wave
function renormalization of the light Higgs mode. We also derive expressions
for the S and T parameters as a function of a generic 5D metric and zero-mode
wave functions. We give an approximate formula for the mass of the radion that
works even for strong deviation from the AdS background. We proceed to work out
the details of an explicit model and derive bounds for the first KK masses of
the various bulk fields. The radion is the lightest new particle although its
mass is already at about 1/3 of the mass of the lightest resonances, the KK
states of the gauge bosons. We examine carefully various issues that can arise
for extreme choices of parameters such as the possible reintroduction of the
hierarchy problem, the onset of nonperturbative physics due to strong IR
curvature or the creation of new hierarchies near the Planck scale. We conclude
that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde
Reducing Constraints in a Higher Dimensional Extension of the Randall and Sundrum Model
In order to investigate the phenomenological implications of warped spaces in
more than five dimensions, we consider a dimensional extension to
the Randall and Sundrum model in which the space is warped with respect to a
single direction by the presence of an anisotropic bulk cosmological constant.
The Einstein equations are solved, giving rise to a range of possible spaces in
which the additional spaces are warped. Here we consider models in
which the gauge fields are free to propagate into such spaces. After carrying
out the Kaluza Klein (KK) decomposition of such fields it is found that the KK
mass spectrum changes significantly depending on how the additional
dimensions are warped. We proceed to compute the lower bound on the KK mass
scale from electroweak observables for models with a bulk
gauge symmetry and models with a bulk gauge
symmetry. It is found that in both cases the most favourable bounds are
approximately TeV, corresponding to a mass of the first gauge
boson excitation of about 4-6 TeV. Hence additional warped dimensions offer a
new way of reducing the constraints on the KK scale.Comment: 27 pages, 15 figures, v3: Additional comments in sections 1, 2 and 4.
New appendix added. Five additional figures. References adde
The Effective Lagrangian for Bulk Fermions in Models with Extra Dimensions
We compute the dimension 6 effective Lagrangian arising from the tree level
integration of an arbitrary number of bulk fermions in models with warped extra
dimensions. The coefficients of the effective operators are written in terms of
simple integrals of the metric and are valid for arbitrary warp factors, with
or without an infrared brane, and for a general Higgs profile. All relevant
tree level fermion effects in electroweak and flavor observables can be
computed using this effective Lagrangian.Comment: 22 pages. V2: typos corrected, matches published versio
Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus
Global mean surface warming has stalled since the end of the twentieth century1, 2, but the net radiation imbalance at the top of the atmosphere continues to suggest an increasingly warming planet. This apparent contradiction has been reconciled by an anomalous heat flux into the ocean3, 4, 5, 6, 7, 8, induced by a shift towards a La Niña-like state with cold sea surface temperatures in the eastern tropical Pacific over the past decade or so. A significant portion of the heat missing from the atmosphere is therefore expected to be stored in the Pacific Ocean. However, in situ hydrographic records indicate that Pacific Ocean heat content has been decreasing9. Here, we analyse observations along with simulations from a global ocean–sea ice model to track the pathway of heat. We find that the enhanced heat uptake by the Pacific Ocean has been compensated by an increased heat transport from the Pacific Ocean to the Indian Ocean, carried by the Indonesian throughflow. As a result, Indian Ocean heat content has increased abruptly, which accounts for more than 70% of the global ocean heat gain in the upper 700 m during the past decade. We conclude that the Indian Ocean has become increasingly important in modulating global climate variability
Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica
Debate continues about the nature of the Cretaceous–Paleogene (K–Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K–Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous–Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian
Frequency-dependent selection predicts patterns of radiations and biodiversity
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking niche-filling processes, whereas constant rates have been attributed to non-adaptive processes such as sexual selection, mutation, and dispersal. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the speciation rate is driven by frequency dependent selection. We used a frequency-dependent and DNA sequence-based model of populations and genetic-distance-based speciation, in the absence of adaptation to ecological niches. We tested the frequency-dependent selection mechanism using cichlid fish and Darwin's finches, two classic model systems for which speciation rates and richness data exist. Using negative frequency dependent selection, our model both predicts the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, the speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity are driven by larger incipient species abundance (and consequent lower extinction rates) with frequency-dependent selection. These results demonstrate that mutations, genetic-distance-based speciation, sexual and frequency-dependent selection are sufficient not only for promoting rapid proliferation of new species, but also for maintaining the high diversity observed in natural systems
Recommended from our members
Reducing anemia prevalence in Afghanistan: socioeconomic correlates and the particular role of agricultural assets
This research aims to examine the socio-economic correlates of anemia in women, and potential sources of iron in household diets in Afghanistan. It also examines whether ownership of agricultural (particularly livestock) assets and their use in food production has a role in alleviating anaemia, especially where local markets may be inadequate. We analyse data from the 2010/11 Afghanistan Multiple Indicator Cluster Survey, estimating a logistic regression to examine how anemia status of women is associated with socio-economic covariates. A key result found is that sheep ownership has a protective effect in reducing anemia (prevalence odds ratio of sheep ownership on anemia of 0.83, 95% confidence interval (CI): 0.73–0.94) after controlling for wealth and other covariates. This association is found to be robust to alternative model specifications. Given the central role of red meat in heme iron provision and absorption of non-heme iron, we hypothesise that sheep ownership promotes mutton consumption from own-production in a setting where market-sourced provision of nutritious food is a challenge. We then use the 2011/12 National Risk and Vulnerability Assessment household data to understand the Afghan diet from the perspective of dietary iron provision, and to understand interactions between own-production, market sourcing and mutton consumption. Sheep ownership is found to increase the likelihood that a household consumed mutton (odds ratio of 1.27, 95% CI: 1.15–1.42), the number of days in the week that mutton was consumed (prevalence rate ratio of 1.24. 95% CI: 1.12–1.37) and the quantity of mutton consumed (7 grams/person/week). In the subsample of mutton consumers, households sourcing mutton mostly from own production consumed mutton 1.5 days more frequently on average than households relying on market purchase, resulting in 100 grams per person per week higher mutton intake. Thus this analysis lends support to the notion that the linkage between sheep ownership and anemia risk is at least partly due to consumption arising from own-production in the presence of market incompleteness
Disordered microbial communities in asthmatic airways.
A rich microbial environment in infancy protects against asthma [1], [2] and infections precipitate asthma exacerbations [3]. We compared the airway microbiota at three levels in adult patients with asthma, the related condition of COPD, and controls. We also studied bronchial lavage from asthmatic children and controls.We identified 5,054 16S rRNA bacterial sequences from 43 subjects, detecting >70% of species present. The bronchial tree was not sterile, and contained a mean of 2,000 bacterial genomes per cm(2) surface sampled. Pathogenic Proteobacteria, particularly Haemophilus spp., were much more frequent in bronchi of adult asthmatics or patients with COPD than controls. We found similar highly significant increases in Proteobacteria in asthmatic children. Conversely, Bacteroidetes, particularly Prevotella spp., were more frequent in controls than adult or child asthmatics or COPD patients.The results show the bronchial tree to contain a characteristic microbiota, and suggest that this microbiota is disturbed in asthmatic airways
Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited
The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC
- …
