2,404 research outputs found

    The effect of Mg location on Co-Mg-Ru/γ-Al2O3 Fischer–Tropsch catalysts

    Get PDF
    © 2016 The Author(s) Published by the Royal Society. All rights reserved.The effectiveness of Mg as a promoter of Co-Ru/γ-Al2O3 Fischer-Tropsch catalysts depends on how and when the Mg is added. When the Mg is impregnated into the support before the Co and Ru addition, some Mg is incorporated into the support in the form of MgxAl2O3+x if the material is calcined at 550°C or 800°C after the impregnation, while the remainder is present as amorphous MgO/MgCO3 phases. After subsequent Co-Ru impregnation MgxCo3-xO4 is formed which decomposes on reduction, leading to Co(0) particles intimately mixed with Mg, as shown by high-resolution transmission electron microscopy. The process of impregnating Co into an Mg-modified support results in dissolution of the amorphous Mg, and it is this Mg which is then incorporated into MgxCo3-xO4. Acid washing or higher temperature calcination after Mg impregnation can remove most of this amorphous Mg, resulting in lower values of x in MgxCo3-xO4. Catalytic testing of these materials reveals that Mg incorporation into the Co oxide phase is severely detrimental to the site-Time yield, while Mg incorporation into the support may provide some enhancement of activity at high temperature

    Quantum theory's last challenge

    Get PDF
    Quantum mechanics is now 100 years old and still going strong. Combining general relativity with quantum mechanics is the last hurdle to be overcome in the "quantum revolution".Comment: (9 pages, LaTex) This is the preprint version of an article that appeared in the issue 6813 (volume 408) of Nature, as part of a 3-article celebration of the 100th anniversary of Planck's solution of the black-body-radiation proble

    A phenomenological description of quantum-gravity-induced space-time noise

    Get PDF
    I propose a phenomenological description of space-time foam and discuss the experimental limits that are within reach of forthcoming experiments.Comment: 10 pages, LaTex, 1 figure. Short paper, omitting most technical details. More detailed analysis was reported in gr-qc/010400

    An interferometric gravitational wave detector as a quantum-gravity apparatus

    Full text link
    As a consequence of the extreme precision of the measurements it performs, an interferometric gravitational wave detector is a macroscopic apparatus for which quantum effects are not negligible. I observe that this property can be exploited to probe some aspects of the interplay between Quantum Mechanics and Gravity.Comment: LaTex, 7 pages. Version accepted for publication in Nature. Under press embargo until publicatio

    Glucanase Inhibitor Protein (GIP)

    Get PDF
    Several key cellular events, such as adhesion to the host surface, penetration, and colonization of host tissue, take place during plant infection by oomycetes that can also manipulate biochemical and physiological processes in their host plants through a diverse array of virulence or avirulence molecules, known as effectors (Birch et al. 2006; Ellis et al. 2006; Kamoun 2007; Schornack et al. 2009). In susceptible plants, these effectors promote infection by suppressing defense responses, enhancing susceptibility, or inducing disease symptoms. In resistant plants, the products of the resistance genes are able to recognize the effectors, promoting an efective defense response known as hypersensitive response (HR) which restricts the pathogen to an area of scorched earth besides host cell death (Kamoun 2003; Kamoun 2007; Schornack et al. 2009). Phytophthora effectors that suppress host defense responses have be ...info:eu-repo/semantics/publishedVersio

    Using the colloidal method to prepare Au catalysts for the alkylation of aniline by benzyl alcohol

    Get PDF
    Using the colloidal method, attempts were made to deposit Au NPs on seven different material supports (TiO2, α and γ-Al2O3, HFeO2, CeO2, C, and SiO2). The deposition between 0.8 and 1 wt% of Au NPs can be generally achieved, apart for SiO2 (no deposition) and α-alumina (0.3 wt%). The resultant sizes of the Au NPs were dependent on the nature as well as the surface area of the support. The catalytic activity and selectivity of the supported Au catalysts were then compared in the alkylation of aniline by benzyl alcohol. Correlations were made between the nature of the support, the size of the Au NP, and the H-binding energy. A minimum H-binding energy of 1100 μV K−1 was found to be necessary for high selectivity for the secondary amine. Comparisons of the TEM images of the pre- and post-reaction catalysts also revealed the extent of Au NP agglomeration under the reaction conditions

    Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

    Get PDF
    The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression

    Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Get PDF
    BACKGROUND: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production – due to competition with neuronal NO-synthase (nNOS) for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR), leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. METHODS: Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz)-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor N(ω)-nitro-L-arginine (L-NNA, 100 μM), while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor N(ω)-hydroxy-nor-L-arginine (nor-NOHA, 10 μM). Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM). RESULTS: At 6 h after ovalbumin-challenge (after the EAR), EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz) was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P < 0.05 all). In contrast to unchallenged controls, the NOS inhibitor L-NNA did not affect EFS-induced relaxation after allergen challenge, indicating that NO deficiency underlies the impaired relaxation. Remarkably, the specific arginase inhibitor nor-NOHA normalized the impaired relaxation to unchallenged control (P < 0.05 all), which effect was inhibited by L-NNA (P < 0.01 all). Moreover, the effect of nor-NOHA was mimicked by exogenous L-arginine. CONCLUSION: The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS

    Additional consensus recommendations for conducting complex innovative trials of oncology agents: a post-pandemic perspective

    Get PDF
    In our 2020 consensus paper, we devised ten recommendations for conducting Complex Innovative Design (CID) trials to evaluate cancer drugs. Within weeks of its publication, the UK was hit by the first wave of the SARS-CoV-2 pandemic. Large CID trials were prioritised to compare the efficacy of new and repurposed COVID-19 treatments and inform regulatory decisions. The unusual circumstances of the pandemic meant studies such as RECOVERY were opened almost immediately and recruited record numbers of participants. However, trial teams were required to make concessions and adaptations to these studies to ensure recruitment was rapid and broad. As these are relevant to cancer trials that enrol patients with similar risk factors, we have added three new recommendations to our original ten: employing pragmatism such as using focused information sheets and collection of only the most relevant data; minimising negative environmental impacts with paperless systems; and using direct-to-patient communication methods to improve uptake. These recommendations can be applied to all oncology CID trials to improve their inclusivity, uptake and efficiency. Above all, the success of CID studies during the COVID-19 pandemic underscores their efficacy as tools for rapid treatment evaluation
    corecore