2,109 research outputs found

    Design Principles for Plasmonic Nanoparticle Devices

    Get PDF
    For all applications of plasmonics to technology it is required to tailor the resonance to the optical system in question. This chapter gives an understanding of the design considerations for nanoparticles needed to tune the resonance. First the basic concepts of plasmonics are reviewed with a focus on the physics of nanoparticles. An introduction to the finite element method is given with emphasis on the suitability of the method to nanoplasmonic device simulation. The effects of nanoparticle shape on the spectral position and lineshape of the plasmonic resonance are discussed including retardation and surface curvature effects. The most technologically important plasmonic materials are assessed for device applicability and the importance of substrates in light scattering is explained. Finally the application of plasmonic nanoparticles to photovoltaic devices is discussed.Comment: 29 pages, 15 figures, part of an edited book: "Linear and Non-Linear Nanoplasmonics

    The iBRA (implant breast reconstruction evaluation) study: protocol for a prospective multi-centre cohort study to inform the feasibility, design and conduct of a pragmatic randomised clinical trial comparing new techniques of implant-based breast reconstruction.

    Get PDF
    BACKGROUND: Implant-based breast reconstruction (IBBR) is the most commonly performed reconstructive procedure in the UK. The introduction of techniques to augment the subpectoral pocket has revolutionised the procedure, but there is a lack of high-quality outcome data to describe the safety or effectiveness of these techniques. Randomised controlled trials (RCTs) are the best way of comparing treatments, but surgical RCTs are challenging. The iBRA (implant breast reconstruction evaluation) study aims to determine the feasibility, design and conduct of a pragmatic RCT to examine the effectiveness of approaches to IBBR. METHODS/DESIGN: The iBRA study is a trainee-led research collaborative project with four phases:Phase 1 - a national practice questionnaire (NPQ) to survey current practicePhase 2 - a multi-centre prospective cohort study of patients undergoing IBBR to evaluate the clinical and patient-reported outcomesPhase 3- an IBBR-RCT acceptability survey and qualitative work to explore patients' and surgeons' views of proposed trial designs and candidate outcomes.Phase 4 - phases 1 to 3 will inform the design and conduct of the future RCT All centres offering IBBR will be encouraged to participate by the breast and plastic surgical professional associations (Association of Breast Surgery and British Association of Plastic Reconstructive and Aesthetic Surgeons). Data collected will inform the feasibility of undertaking an RCT by defining current practice and exploring issues surrounding recruitment, selection of comparator arms, choice of primary outcome, sample size, selection criteria, trial conduct, methods of data collection and feasibility of using the trainee collaborative model to recruit patients and collect data. DISCUSSION: The preliminary work undertaken within the iBRA study will determine the feasibility, design and conduct of a definitive RCT in IBBR. It will work with the trainee collaborative to build capacity by creating an infrastructure of research-active breast and plastic surgeons which will facilitate future high-quality research that will ultimately improve outcomes for all women seeking reconstructive surgery. TRIAL REGISTRATION: ISRCTN37664281

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Is Acceleration Used for Ocular Pursuit and Spatial Estimation during Prediction Motion?

    Get PDF
    Here we examined ocular pursuit and spatial estimation in a linear prediction motion task that emphasized extrapolation of occluded accelerative object motion. Results from the ocular response up to occlusion showed that there was evidence in the eye position, velocity and acceleration data that participants were attempting to pursue the moving object in accord with the veridical motion properties. They then attempted to maintain ocular pursuit of the randomly-ordered accelerative object motion during occlusion but this was not ideal, and resulted in undershoot of eye position and velocity at the moment of object reappearance. In spatial estimation there was a general bias, with participants less likely to report object reappearance being behind than ahead of the expected position. In addition, participants’ spatial estimation did not take into account the effects of object acceleration. Logistic regression indicated that spatial estimation was best predicted for the majority of participants by the difference between actual object reappearance position and an extrapolation based on pre-occlusion velocity. In combination, and in light of previous work, we interpret these findings as showing that eye movements are scaled in accord with the effects of object acceleration but do not directly specify information for accurate spatial estimation in prediction motion

    Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia

    Get PDF
    Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities

    The impact of generic-only drug benefits on patients' use of inhaled corticosteroids in a Medicare population with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients face increasing insurance restrictions on prescription drugs, including generic-only coverage. There are no generic inhaled corticosteroids (ICS), which are a mainstay of asthma therapy, and patients pay the full price for these drugs under generic-only policies. We examined changes in ICS use following the introduction of generic-only coverage in a Medicare Advantage population from 2003–2004.</p> <p>Methods</p> <p>Subjects were age 65+, with asthma, prior ICS use, and no chronic obstructive pulmonary disorder (n = 1,802). In 2004, 74.0% switched from having a 30brandcopaymentplantoagenericonlycoverageplan(restrictedcoverage);2630 brand-copayment plan to a generic-only coverage plan (restricted coverage); 26% had 15–25 brand copayments in 2003–2004 (unrestricted coverage). Using linear difference-in-difference models, we examined annual changes in ICS use (measured by days-of-supply dispensed). There was a lower-cost ICS available within the study setting and we also examined changes in drug choice (higher- vs. lower-cost ICS). In multivariable models we adjusted for socio-demographic, clinical, and asthma characteristics.</p> <p>Results</p> <p>In 2003 subjects had an average of 188 days of ICS supply. Restricted compared with unrestricted coverage was associated with reductions in ICS use from 2003–2004 (-15.5 days-of-supply, 95% confidence interval (CI): -25.0 to -6.0). Among patients using higher-cost ICS drugs in 2003 (n = 662), more restricted versus unrestricted coverage subjects switched to the lower-cost ICS in 2004 (39.8% vs. 10.3%). Restricted coverage was not associated with decreased ICS use (2003–2004) among patients who switched to the lower-cost ICS (18.7 days-of-supply, CI: -27.5 to 65.0), but was among patients who did not switch (-38.6 days-of-supply, CI: -57.0 to -20.3). In addition, restricted coverage was associated with decreases in ICS use among patients with both higher- and lower-risk asthma (-15.0 days-of-supply, CI: -41.4 to 11.44; and -15.6 days-of-supply, CI: -25.8 to -5.3, respectively).</p> <p>Conclusion</p> <p>In this elderly population, patients reduced their already low ICS use in response to losing drug coverage. Switching to the lower-cost ICS mitigated reductions in use among patients who previously used higher-cost drugs. Additional work is needed to assess barriers to switching ICS drugs and the clinical effects of these drug use changes.</p

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Cold gas accretion in galaxies

    Get PDF
    Evidence for the accretion of cold gas in galaxies has been rapidly accumulating in the past years. HI observations of galaxies and their environment have brought to light new facts and phenomena which are evidence of ongoing or recent accretion: 1) A large number of galaxies are accompanied by gas-rich dwarfs or are surrounded by HI cloud complexes, tails and filaments. It may be regarded as direct evidence of cold gas accretion in the local universe. It is probably the same kind of phenomenon of material infall as the stellar streams observed in the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI have been found in nearby spiral galaxies. While a large fraction of this gas is produced by galactic fountains, it is likely that a part of it is of extragalactic origin. 3) Spirals are known to have extended and warped outer layers of HI. It is not clear how these have formed, and how and for how long the warps can be sustained. Gas infall has been proposed as the origin. 4) The majority of galactic disks are lopsided in their morphology as well as in their kinematics. Also here recent accretion has been advocated as a possible cause. In our view, accretion takes place both through the arrival and merging of gas-rich satellites and through gas infall from the intergalactic medium (IGM). The infall may have observable effects on the disk such as bursts of star formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates needed to sustain the observed star formation (~1 Msol/yr), additional infall of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages. Full-resolution version available at http://www.astron.nl/~oosterlo/accretionRevie
    corecore