112 research outputs found

    Insulin refill adherence among type 2 diabetes mellitus patients attending public health clinics in Perlis, Malaysia

    Get PDF
    Poor adherence to diabetes medications, particularly insulin, is still a concern. This study aimed to assess insulin refill adherence among diabetes patients attending public health clinics in Perlis before and during the COVID-19 pandemic. The underlying factors associated with insulin refill adherence were also investigated. This cross-sectional study was conducted among type 2 diabetes mellitus patients with insulin therapy from five primary health clinics in Perlis. Simple random sampling method was used to select participants from the Pharmacy Information System (PhIS) database. Adherence to insulin refill was measured by medication possession ratio before and during the COVID-19 pandemic. A general linear model was used to identify factors associated with adherence to insulin refills. A total of 426 patients were included in this study. Patients in this study were mostly Malay (94.3%) and female (63.1%). The insulin refill adherence was significantly poorer during the COVID-19 pandemic (mean=59.24, SD=28.97) than before the pandemic (mean=68.31, SD=31.27) (p<0.001). Only total daily insulin dose (adjusted β = -0.129; p=0.012) and not having hypertension (adjusted β = -7.359; p=0.043) were significantly associated with insulin refill adherence. This study highlighted that overall insulin refill adherence among patients in public health clinics in Perlis was still low, especially during the COVID-19 pandemic. Special attention should be given to patients using high total daily insulin doses and having no hypertension to improve adherence

    Acupuncture for sequelae of Bell's palsy: a randomized controlled trial protocol

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Incomplete recovery from facial palsy has a long-term impact on the quality of life, and medical options for the sequelae of Bell's palsy are limited. Invasive treatments and physiotherapy have been employed to relieve symptoms, but there is limited clinical evidence for their effectiveness. Acupuncture is widely used on Bell's palsy patients in East Asia, but there is insufficient evidence for its effectiveness on Bell's palsy sequelae. The objective is to evaluate the efficacy and safety of acupuncture in patients with sequelae of Bell's palsy.</p> <p>Method/Design</p> <p>This study consists of a randomized controlled trial with two parallel arms: an acupuncture group and a waitlist group. The acupuncture group will receive acupuncture treatment three times per week for a total of 24 sessions over 8 weeks. Participants in the waitlist group will not receive any acupuncture treatments during this 8 week period, but they will participate in the evaluations of symptoms at the start of the study, at 5 weeks and at 8 weeks after randomization, at which point the same treatment as the acupuncture group will be provided. The primary outcome will be analyzed by the change in the Facial Disability Index (FDI) from baseline to week eight. The secondary outcome measures will include FDI from baseline to week five, House-Brackmann Grade, lip mobility, and stiffness scales.</p> <p>Trial registration</p> <p>Current Controlled-Trials <a href="http://www.controlled-trials.com/ISRCTN43104115">ISRCTN43104115</a>; registration date: 06 July 2010; the date of the first patient's randomization: 04 August 2010</p

    Ethnic Differences in Survival after Breast Cancer in South East Asia

    Get PDF
    Background: The burden of breast cancer in Asia is escalating. We evaluated the impact of ethnicity on survival after breast cancer in the multi-ethnic region of South East Asia. Methodology/Principal Findings Using the Singapore-Malaysia hospital-based breast cancer registry, we analyzed the association between ethnicity and mortality following breast cancer in 5,264 patients diagnosed between 1990 and 2007 (Chinese: 71.6%, Malay: 18.4%, Indian: 10.0%). We compared survival rates between ethnic groups and calculated adjusted hazard ratios (HR) to estimate the independent effect of ethnicity on survival. Malays (n = 968) presented at a significantly younger age, with larger tumors, and at later stages than the Chinese and Indians. Malays were also more likely to have axillary lymph node metastasis at similar tumor sizes and to have hormone receptor negative and poorly differentiated tumors. Five year overall survival was highest in the Chinese women (75.8%; 95%CI: 74.4%–77.3%) followed by Indians (68.0%; 95%CI: 63.8%–72.2%), and Malays (58.5%; 95%CI: 55.2%–61.7%). Compared to the Chinese, Malay ethnicity was associated with significantly higher risk of all-cause mortality (HR: 1.34; 95%CI: 1.19–1.51), independent of age, stage, tumor characteristics and treatment. Indian ethnicity was not significantly associated with risk of mortality after breast cancer compared to the Chinese (HR: 1.14; 95%CI: 0.98–1.34). Conclusion: In South East Asia, Malay ethnicity is independently associated with poorer survival after breast cancer. Research into underlying reasons, potentially including variations in tumor biology, psychosocial factors, treatment responsiveness and lifestyle after diagnosis, is warranted

    P130Cas Attenuates Epidermal Growth Factor (EGF) Receptor Internalization by Modulating EGF-Triggered Dynamin Phosphorylation

    Get PDF
    BACKGROUND: Endocytosis controls localization-specific signal transduction via epidermal growth factor receptor (EGFR), as well as downregulation of that receptor. Extracellular matrix (ECM)-integrin coupling induces formation of macromolecular complexes that include EGFR, integrin, Src kinase and p130Cas, resulting in EGFR activation. In addition, cell adhesion to ECM increases EGFR localization at the cell surface and reduces EGFR internalization. The molecular mechanisms involved are not yet well understood. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular mechanism by which p130Cas affects the endocytic regulation of EGFR. Biochemical quantification revealed that cell adhesion to fibronectin (FN) increases total EGFR levels and its phosphorylation, and that p130Cas is required for this process. Measurements of Texas Red-labeled EGF uptake and cell surface EGFR revealed that p130Cas overexpression reduces EGF-induced EGFR internalization, while p130Cas depletion enhances it. In addition, both FN-mediated cell adhesion and p130Cas overexpression reduce EGF-stimulated dynamin phosphorylation, which is necessary for EGF-induced EGFR internalization. Coimmunoprecipitation and GST pull-down assays confirmed the interaction between p130Cas and dynamin. Moreover, a SH3-domain-deleted form of p130Cas, which shows diminished binding to dynamin, inhibits dynamin phosphorylation and EGF uptake less effectively than wild-type p130Cas. CONCLUSIONS/SIGNIFICANCE: Our results show that p130Cas plays an inhibitory role in EGFR internalization via its interaction with dynamin. Given that the EGFR internalization process determines signaling density and specificity in the EGFR pathway, these findings suggest that the interaction between p130Cas and dynamin may regulate EGFR trafficking and signaling in the same manner as other endocytic regulatory proteins related to EGFR endocytosis

    Probiotic Sonicates Selectively Induce Mucosal Immune Cells Apoptosis through Ceramide Generation via Neutral Sphingomyelinase

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect. [Methodology/Principal Findings]: Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L. brevis (LB) and S. thermophilus (ST) and the non-probiotic E. coli (EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn's disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB-induced apoptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase. [Conclusions]: These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics, and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.The funding sources included grants from Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Ministerio de Ciencia e Innovación (SAF2005-00280 and SAF2008-03676 to MS, FIS2009-00056 to AM, SAF2009-11417 to JCF), Fundación Ramón Areces (to MS), the National Institutes of Health (DK30399 and DK50984 to CF) and the Research Center for Liver and Pancreatic Diseases funded by the United States National Institute for Alcohol Abuse and Alcoholism (P50 AA 11999 to JCF).Peer reviewe

    PIWI Associated siRNAs and piRNAs Specifically Require the Caenorhabditis elegans HEN1 Ortholog henn-1

    Get PDF
    Small RNAs—including piRNAs, miRNAs, and endogenous siRNAs—bind Argonaute proteins to form RNA silencing complexes that target coding genes, transposons, and aberrant RNAs. To assess the requirements for endogenous siRNA formation and activity in Caenorhabditis elegans, we developed a GFP-based sensor for the endogenous siRNA 22G siR-1, one of a set of abundant siRNAs processed from a precursor RNA mapping to the X chromosome, the X-cluster. Silencing of the sensor is also dependent on the partially complementary, unlinked 26G siR-O7 siRNA. We show that 26G siR-O7 acts in trans to initiate 22G siRNA formation from the X-cluster. The presence of several mispairs between 26G siR-O7 and the X-cluster mRNA, as well as mutagenesis of the siRNA sensor, indicates that siRNA target recognition is permissive to a degree of mispairing. From a candidate reverse genetic screen, we identified several factors required for 22G siR-1 activity, including the chromatin factors mes-4 and gfl-1, the Argonaute ergo-1, and the 3′ methyltransferase henn-1. Quantitative RT–PCR of small RNAs in a henn-1 mutant and deep sequencing of methylated small RNAs indicate that siRNAs and piRNAs that associate with PIWI clade Argonautes are methylated by HENN-1, while siRNAs and miRNAs that associate with non-PIWI clade Argonautes are not. Thus, PIWI-class Argonaute proteins are specifically adapted to associate with methylated small RNAs in C. elegans

    Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer

    Get PDF
    Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships to patient survival. Using gene expression signatures, we devised an in silico strategy to map patterns of oncogenic pathway activation in 301 primary gastric cancers, the second highest cause of global cancer mortality. We identified three oncogenic pathways (proliferation/stem cell, NF-κB, and Wnt/β-catenin) deregulated in the majority (>70%) of gastric cancers. We functionally validated these pathway predictions in a panel of gastric cancer cell lines. Patient stratification by oncogenic pathway combinations showed reproducible and significant survival differences in multiple cohorts, suggesting that pathway interactions may play an important role in influencing disease behavior. Individual GCs can be successfully taxonomized by oncogenic pathway activity into biologically and clinically relevant subgroups. Predicting pathway activity by expression signatures thus permits the study of multiple cancer-related pathways interacting simultaneously in primary cancers, at a scale not currently achievable by other platforms

    A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Get PDF
    BACKGROUND: This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. DISCUSSION: The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. SUMMARY: Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine
    corecore