17 research outputs found

    The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes

    Get PDF
    Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimize their removal. The fate of oestrone, 17ÎČ-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contractor were investigated. The overall removal efficiencies of all the compounds ranged from 41 % to 100 %. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contractors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10-48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge

    Remoção de fårmacos e desreguladores endócrinos em estaçÔes de tratamento de esgoto: revisão da literatura

    Full text link

    Analytical and biological characterization of halogenated gemfibrozil produced through chlorination of wastewater

    No full text
    The cholesterol-lowering pharmaceutical gemfibrozil is a relevant environmental contaminant because of its frequency of detection in U.S. wastewaters at concentrations which have been shown to disrupt endocrine function in aquatic species. The treatment of gemfibrozil solutions with sodium hypochlorite yielded a 4â€Č-chlorinated gemfibrozil analog (chlorogemfibrozil). In the presence of bromide ion, as is often encountered in municipal wastewater, hypobromous acid generated through a halogen exchange reaction produced an additional 4â€Č-brominated gemfibrozil product (bromogemfibrozil). Standards of chloro- and bromogemfibrozil were synthesized, isolated and characterized using mass spectrometry and NMR spectroscopy. Mass spectrometry was used to follow the in situ halogenation reaction of gemfibrozil in deionized water and wastewater matrices, and to measure levels of gemfibrozil (254 ± 20 ng/L), chlorogemfibrozil (166 ± 121 ng/L), and bromogemfibrozil (50 ± 11 ng/L) in advanced primary wastewater treatment effluent treated by chlorination. Chlorogemfibrozil demonstrated a significant (p < 0.05) reduction in the levels of 11-ketotestosterone at 55.1 ÎŒg/L and bromogemfibrozil demonstrated a significant (p < 0.05) reduction in the levels of testosterone at 58.8 ÎŒg/L in vivo in Japanese medaka in a 21 day exposure. These results indicated that aqueous exposure to halogenated degradates of gemfibrozil enhanced the antiandrogenicity of the parent compound in a model fish species, demonstrating that chlorination may increase the toxicity of pharmaceutically active compounds in surface water. © 2012 American Chemical Society

    Advances in research and applications of energy-related occupant behavior in buildings:

    Get PDF
    Occupant behavior is one of the major factors influencing building energy consumption and contributing to uncertainty in building energy use prediction and simulation. Currently the understanding of occupant behavior is insufficient both in building design, operation and retrofit, leading to incorrect simplifications in modeling and analysis. This paper introduced the most recent advances and current obstacles in modeling occupant behavior and quantifying its impact on building energy use. The major themes include advancements in data collection techniques, analytical and modeling methods, and simulation applications which provide insights into behavior energy savings potential and impact. There has been growing research and applications in this field, but significant challenges and opportunities still lie ahead
    corecore