1,718 research outputs found

    Collective behavior of heterogeneous neural networks

    Full text link
    We investigate a network of integrate-and-fire neurons characterized by a distribution of spiking frequencies. Upon increasing the coupling strength, the model exhibits a transition from an asynchronous regime to a nontrivial collective behavior. At variance with the Kuramoto model, (i) the macroscopic dynamics is irregular even in the thermodynamic limit, and (ii) the microscopic (single-neuron) evolution is linearly stable.Comment: 4 pages, 5 figure

    Coarsening scenarios in unstable crystal growth

    Full text link
    Crystal surfaces may undergo thermodynamical as well kinetic, out-of-equilibrium instabilities. We consider the case of mound and pyramid formation, a common phenomenon in crystal growth and a long-standing problem in the field of pattern formation and coarsening dynamics. We are finally able to attack the problem analytically and get rigorous results. Three dynamical scenarios are possible: perpetual coarsening, interrupted coarsening, and no coarsening. In the perpetual coarsening scenario, mound size increases in time as L=t^n, where the coasening exponent is n=1/3 when faceting occurs, otherwise n=1/4.Comment: Changes in the final part. Accepted for publication in Phys. Rev. Let

    Entropy potential and Lyapunov exponents

    Full text link
    According to a previous conjecture, spatial and temporal Lyapunov exponents of chaotic extended systems can be obtained from derivatives of a suitable function: the entropy potential. The validity and the consequences of this hypothesis are explored in detail. The numerical investigation of a continuous-time model provides a further confirmation to the existence of the entropy potential. Furthermore, it is shown that the knowledge of the entropy potential allows determining also Lyapunov spectra in general reference frames where the time-like and space-like axes point along generic directions in the space-time plane. Finally, the existence of an entropy potential implies that the integrated density of positive exponents (Kolmogorov-Sinai entropy) is independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO

    Coarsening in surface growth models without slope selection

    Full text link
    We study conserved models of crystal growth in one dimension [tz(x,t)=xj(x,t)\partial_t z(x,t) =-\partial_x j(x,t)] which are linearly unstable and develop a mound structure whose typical size L increases in time (L=tnL = t^n). If the local slope (m=xzm =\partial_x z) increases indefinitely, nn depends on the exponent γ\gamma characterizing the large mm behaviour of the surface current jj (j=1/mγj = 1/|m|^\gamma): n=1/4n=1/4 for 1<γ<31< \gamma <3 and n=(1+γ)/(1+5γ)n=(1+\gamma)/(1+5\gamma) for γ>3\gamma>3.Comment: 7 pages, 2 EPS figures. To be published in J. Phys. A (Letter to the Editor

    Measuring spike train synchrony

    Get PDF
    Estimating the degree of synchrony or reliability between two or more spike trains is a frequent task in both experimental and computational neuroscience. In recent years, many different methods have been proposed that typically compare the timing of spikes on a certain time scale to be fixed beforehand. Here, we propose the ISI-distance, a simple complementary approach that extracts information from the interspike intervals by evaluating the ratio of the instantaneous frequencies. The method is parameter free, time scale independent and easy to visualize as illustrated by an application to real neuronal spike trains obtained in vitro from rat slices. In a comparison with existing approaches on spike trains extracted from a simulated Hindemarsh-Rose network, the ISI-distance performs as well as the best time-scale-optimized measure based on spike timing.Comment: 11 pages, 13 figures; v2: minor modifications; v3: minor modifications, added link to webpage that includes the Matlab Source Code for the method (http://inls.ucsd.edu/~kreuz/Source-Code/Spike-Sync.html

    Characterizing dynamics with covariant Lyapunov vectors

    Full text link
    A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.Comment: 4 pages, 3 figures, submitted to Physical Review letter

    Collective oscillations in disordered neural networks

    Get PDF
    We investigate the onset of collective oscillations in a network of pulse-coupled leaky-integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O.V. Popovych at al., Phys. Rev. E 71} 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to scale to zero for N going to infinite, with an exponent that is different for the two types of disorder. In the thermodynamic limit, the random-network dynamics reduces to that of a fully homogenous system with a suitably scaled coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to zero as 1/N^2, analogously to the scaling found for the `splay state'.Comment: 8.5 Pages, 12 figures, submitted to Physical Review

    ERROR PROPAGATION IN EXTENDED CHAOTIC SYSTEMS

    Get PDF
    A strong analogy is found between the evolution of localized disturbances in extended chaotic systems and the propagation of fronts separating different phases. A condition for the evolution to be controlled by nonlinear mechanisms is derived on the basis of this relationship. An approximate expression for the nonlinear velocity is also determined by extending the concept of Lyapunov exponent to growth rate of finite perturbations.Comment: Tex file without figures- Figures and text in post-script available via anonymous ftp at ftp://wpts0.physik.uni-wuppertal.de/pub/torcini/jpa_le
    corecore