Estimating the degree of synchrony or reliability between two or more spike
trains is a frequent task in both experimental and computational neuroscience.
In recent years, many different methods have been proposed that typically
compare the timing of spikes on a certain time scale to be fixed beforehand.
Here, we propose the ISI-distance, a simple complementary approach that
extracts information from the interspike intervals by evaluating the ratio of
the instantaneous frequencies. The method is parameter free, time scale
independent and easy to visualize as illustrated by an application to real
neuronal spike trains obtained in vitro from rat slices. In a comparison with
existing approaches on spike trains extracted from a simulated Hindemarsh-Rose
network, the ISI-distance performs as well as the best time-scale-optimized
measure based on spike timing.Comment: 11 pages, 13 figures; v2: minor modifications; v3: minor
modifications, added link to webpage that includes the Matlab Source Code for
the method (http://inls.ucsd.edu/~kreuz/Source-Code/Spike-Sync.html