According to a previous conjecture, spatial and temporal Lyapunov exponents
of chaotic extended systems can be obtained from derivatives of a suitable
function: the entropy potential. The validity and the consequences of this
hypothesis are explored in detail. The numerical investigation of a
continuous-time model provides a further confirmation to the existence of the
entropy potential. Furthermore, it is shown that the knowledge of the entropy
potential allows determining also Lyapunov spectra in general reference frames
where the time-like and space-like axes point along generic directions in the
space-time plane. Finally, the existence of an entropy potential implies that
the integrated density of positive exponents (Kolmogorov-Sinai entropy) is
independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO