1,629 research outputs found

    Can dileptons reveal the in-medium properties of vector mesons?

    Get PDF
    Dilepton production from both pion-pion and kaon-antikaon annihilation in heavy-ion collisions is studied using the relativistic transport model. The formation of a rho meson from pion-pion annihilation and a phi meson from kaon-antikaon annihilation, their propagation in the medium, and their decay into dileptons are explicitly treated. Including the medium modifications of the masses and widths of vector mesons as predicted by the QCD sum-rule calculations, we study their effects on the dilepton invariant mass spectra from heavy-ion collisions at SIS/GSI energies.Comment: 22 pages, 11 figures available upon request to [email protected]

    HYPOGLYCEMIC AND LIPID LOWERING EFFECT OF AQUEOUS FRESH LEAF EXTRACT OF CHROMOLAENA ODORATA (LINN) IN ALBINO WISTAR RATS FED DIFFERENT CONCENTRATIONS OF CHOLESTEROL ENRICHED DIET

    Get PDF
    Objectives:  High lipids and carbohydrate have been seriously implicated to cardiovascular problems, which has led to several uses of medicinal plants for traditional remedies. The present study investigated the lipid lowering activity of fresh leaf extract of Chromolaena odorata in Albino wistar rats. Methods: Twenty (20) rats used for the study were grouped into four groups of five (5) rats each. Group I served as normal control, group II, III and IV served as test groups, fed 75, 108 and 148 g of cholesterol enriched diet for one week and thereafter, administered with 50, 100 and 150 mg/kg body weight of fresh leaf extract of Chromolaena odorata respectively for four (4) days. Lipid profile and blood glucose were assayed at fed state and after administration. Results showed a significant (p<0.05) increase in total cholesterol, triacylglycerol, low density lipoprotein, blood glucose concentration and body weight compared with control group in fed state.  Results: Administration with fresh leaf extract of Chromolaena odorata showed a significant (p<0.05) increase in high density lipoprotein, significant (p<0.05) decrease in blood glucose concentration, low density lipoproteins, triacylglycerol, total cholesterol and body weight of rats. The oral treatment with 50, 100 and 150 mg/kg body weight of the fresh leaf extract of this study demonstrated a general hypoglycemic and hypolipidemic activity not necessary a dose dependent pattern. Conclusion: It may therefore be concluded that the hypoglycemic and hypolipidemic activity of Chromolaena odorata taken freshly squeezed could be due to its phytochemical and antioxidants content.        Peer Review History: Received 24 February 2018;   Revised 3 March; Accepted 8 March, Available online 15 March 2018 UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency. Received file:        Reviewer's Comments: Average Peer review marks at initial stage: 5.5/10 Average Peer review marks at publication stage: 7.5/10 Reviewer(s) detail: Dr. Adebayo Gege Grace Iyabo, University of Ibadan, Nigeria, [email protected] Prof. Dr. Ali Gamal Ahmed Al-kaf, Sana'a university, Yemen, [email protected] Similar Articles: ANTIDIABETIC AND ANTIHYPERLIPIDEMIC ACTIVITY OF DRACAENA CINNABARI BALF. RESIN ETHANOLIC EXTRACT OF SOQATRA ISLAND IN EXPERIMENTAL ANIMALS This article has been cited by: Ndife, Joel et al. “Development and comparative evaluation of green and black tisanes using scent leaves (Chromolaena odorata).” Journal of Food Science 3 (2019): 448-455. Pubme

    Human Cell Chips: Adapting DNA Microarray Spotting Technology to Cell-Based Imaging Assays

    Get PDF
    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFκB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFα, and interferon), and we demonstrate scalability by printing a chip with ∼4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability

    CXCR4 Antagonism attenuates the development of diabetic cardiac fibrosis

    Full text link
    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach

    Correlation between three assay systems for anti-Mullerian hormone (AMH) determination

    Get PDF
    PURPOSE: Analysis of anti-Müllerian hormone (AMH) is becoming of recognized importance in reproductive medicine, but assays are not standardized. We have evaluated the correlation between the new Gen II ELISA kit (Beckman-Coutler) and the older ELISA kits by Immunotech (IOT) and Diagnostic Systems Laboratories (DSL). METHODS: A total of 56 archived serum samples from patients with subfertility or reproductive endocrine disorders were retrieved and assayed in duplicate using the three AMH ELISA kits . The samples covered a wide range of AMH concentrations (1.9 to 142.5 pmol/L). RESULTS: We observed good correlations between the new (AMH Gen II) and old AMH assay kits by IOT and DSL (R(2) = 0.971 and 0.930 respectively). The regression equations were AMH (Gen II) = 1.353 × AMH (IOT) + 0.051 and AMH (Gen II) = 1.223 × AMH (DSL) – 1.270 respectively. CONCLUSIONS: AMH concentrations using the Gen II kit are slightly higher than those from the IOT and DSL kits. Standardization of assay results worldwide is urgently required but this analysis facilitates the interpretation of values obtained historically and in future studies using any of the 3 assays available. Meanwhile, adapting clinical cut-offs from previously published work by direct conversion is not recommended

    Quantum Gravity in 2+1 Dimensions: The Case of a Closed Universe

    Get PDF
    In three spacetime dimensions, general relativity drastically simplifies, becoming a ``topological'' theory with no propagating local degrees of freedom. Nevertheless, many of the difficult conceptual problems of quantizing gravity are still present. In this review, I summarize the rather large body of work that has gone towards quantizing (2+1)-dimensional vacuum gravity in the setting of a spatially closed universe.Comment: 61 pages, draft of review for Living Reviews; comments, criticisms, additions, missing references welcome; v2: minor changes, added reference

    Epigenetic Silencing of Nucleolar rRNA Genes in Alzheimer's Disease

    Get PDF
    Background: Ribosomal deficits are documented in mild cognitive impairment (MCI), which often represents an early stage Alzheimer’s disease (AD), as well as in advanced AD. The nucleolar rRNA genes (rDNA), transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation. Methodology/Principal Findings: To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups. Conclusions/Significance: In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosoma

    Alcohol reversibly disrupts TNF-α/TACE interactions in the cell membrane

    Get PDF
    BACKGROUND: Alcohol abuse has long been known to adversely affect innate and adaptive immune responses and pre-dispose to infections. One cellular mechanism responsible for this effect is alcohol-induced suppression of TNF-α (TNF) by mononuclear phagocytes. We have previously shown that alcohol in part inhibits TNF-α processing by TNF converting enzyme (TACE) in human monocytes. We hypothesized that the chain length of the alcohol is critical for post-transcriptional suppression of TNF secretion. METHODS: Due to the complex transcriptional and post-transcriptional regulation of TNF in macrophages, to specifically study TNF processing at the cell membrane we performed transient transfections of A549 cells with the TNF cDNA driven by the heterologous CMV promoter. TNF/TACE interactions at the cell surface were assessed using fluorescent resonance energy transfer (FRET) microscopy. RESULTS: The single carbon alcohol, methanol suppressed neither TNF secretion nor FRET efficiency between TNF and TACE. However, 2, 3, and 4 carbon alcohols were potent suppressors of TNF processing and FRET efficiency. The effect of ethanol, a 2-carbon alcohol was reversible. CONCLUSION: These data show that inhibition of TNF-α processing by acute ethanol is a direct affect of ethanol on the cell membrane and is reversible upon cessation or metabolism

    Quantifying myosin light chain phosphorylation in single adherent cells with automated fluorescence microscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In anchorage dependent cells, myosin generated contractile forces affect events closely associated with adhesion such as the formation of stress fibers and focal adhesions, and temporally distal events such as entry of the cell into S-phase. As occurs in many signaling pathways, a phosphorylation reaction (in this case, phosphorylation of myosin light chain) is directly responsible for cell response. Western blotting has been useful in measuring intracellular phosphorylation events, but cells are lysed in the process of sample preparation for western blotting, and spatial information such as morphology, localization of the phosphorylated species, and the distribution of individual cell responses across the population is lost. We report here a reliable automated microscopy method for quantitative measurement of myosin light chain phosphorylation in adherent cells. This method allows us to concurrently examine cell morphology, cell-cell contact, and myosin light chain diphosphorylation in vascular smooth muscle cells.</p> <p>Results</p> <p>Paraformaldehyde fixation and Triton X-100 permeabilization preserved cell morphology and myosin light chain phosphorylation better than the alternative fixation/permeabilization methods tested. We utilized automated microscopy methods to acquire three color images, determine cell spread area, and quantify the intensity of staining within each cell with anti-phospho-MLC antibody. Our results indicate that A10 rat aortic smooth muscle cells exhibit a re producible non-Gaussian distribution of MLC phosphorylation across a population of unsynchronized genetically identical cells. Adding an inhibitor of Rho kinase, Y27632, or plating cells on a low density of fibronectin, reduced phospho-myosin light chain signal as expected. On the other hand, adding calyculin A, an activator of contractility, increased myosin light chain phosphorylation. The IC<sub>50 </sub>for myosin light chain phosphorylation using Y27632 was determined to be 2.1 ± 0.6 micrometers. We observed a positive linear relationship between cell area and myosin light chain diphosphorylation, which is consistent with what has been reported in the literature using other methods.</p> <p>Conclusion</p> <p>Our results show that using proper specimen fixation techniques and background subtraction methods, imaging cytometry can be used to reliably measure relative myosin light chain phosphorylation in individual adherent cells. Importantly, the ability to make this measurement in adherent cells allows for simultaneous measurement of and correlation with other parameters of cellular topography such as morphology and cell-cell proximity. This assay has potential application in screening for drug development.</p
    corecore