188 research outputs found

    Updated fracture incidence rates for the US version of FRAX®

    Get PDF
    # The Author(s) 2009. This article is published with open access at Springerlink.com Summary On the basis of updated fracture and mortality data, we recommend that the base population values used in the US version of FRAX ® be revised. The impact of suggested changes is likely to be a lowering of 10-year fracture probabilities. Introduction Evaluation of results produced by the US version of FRAX ® indicates that this tool overestimates the likelihood of major osteoporotic fracture. In an attempt to correct this, we updated underlying fracture and mortality rates for the model. Methods We used US hospital discharge data from 2006 t

    Residual effects of esmirtazapine on actual driving performance: overall findings and an exploratory analysis into the role of CYP2D6 phenotype

    Get PDF
    INTRODUCTION: Esmirtazapine is evaluated as a novel drug for treatment of insomnia. PURPOSE: The present study was designed to assess residual effects of single and repeated doses of esmirtazapine 1.5 and 4.5 mg on actual driving in 32 healthy volunteers in a double-blind, placebo-controlled study. Treatment with single doses of zopiclone 7.5 mg was included as active control. METHODS: Treatments were administered in the evening. Driving performance was assessed in the morning, 11 h after drug intake, in a standardized on-the-road highway driving test. The primary study parameter was standard deviation of lateral position (SDLP), a measure of "weaving". All subjects were subjected to CYP2D6 phenotyping in order to distinguish poor metabolizers from extensive metabolizers of esmirtazapine. RESULTS: Overall, esmirtazapine 1.5 mg did not produce any clinically relevant change in SDLP after single and repeated dosing. Driving impairment, i.e., a rise in SDLP, did occur after a single-dose administration of esmirtazapine 4.5 mg but was resolved after repeated doses. Acute driving impairment was more pronounced after both doses of esmirtazapine in a select group of poor metabolizers (N = 7). A single-dose zopiclone 7.5 mg also increased SDLP as expected. CONCLUSION: It is concluded that single and repeated doses of 1.5 mg esmirtazapine are generally not associated with residual impairment. Single-dose administration of 4.5 mg esmirtazapine was associated with residual impairment that generally resolved after repeated administration. Exploratory analysis in a small group of poor CYP 2D6 metabolizers suggested that these subjects are more sensitive to the impairing effects of esmirtazapine on car driving

    Cryopyrin-Associated Periodic Syndrome: An Update on Diagnosis and Treatment Response

    Get PDF
    Cryopyrin-associated periodic syndrome (CAPS) is a rare hereditary inflammatory disorder encompassing a continuum of three phenotypes: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and neonatal-onset multisystem inflammatory disease. Distinguishing features include cutaneous, neurological, ophthalmologic, and rheumatologic manifestations. CAPS results from a gain-of-function mutation of the NLRP3 gene coding for cryopyrin, which forms intracellular protein complexes known as inflammasomes. Defects of the inflammasomes lead to overproduction of interleukin-1, resulting in inflammatory symptoms seen in CAPS. Diagnosis is often delayed and requires a thorough review of clinical symptoms. Remarkable advances in our understanding of the genetics and the molecular pathway that is responsible for the clinical phenotype of CAPS has led to the development of effective treatments. It also has become clear that the NLRP3 inflammasome plays a critical role in innate immune defense and therefore has wider implications for other inflammatory disease states

    Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    Get PDF
    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the `resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistanceassociated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised

    Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of <it>Plasmodium falciparum </it>transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on <it>Plasmodium </it>stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (<it>Azadirachta indica</it>, Meliaceae) seeds, is a promising candidate, inhibiting <it>Plasmodium </it>exflagellation <it>in vitro </it>at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal<sup>®</sup>, an azadirachtin-enriched extract of neem seeds, using the rodent malaria <it>in vivo </it>model <it>Plasmodium berghei</it>/<it>Anopheles stephensi</it>.</p> <p>Methods</p> <p><it>Anopheles stephensi </it>females were offered a blood-meal on <it>P. berghei </it>infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal<sup>® </sup>on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined.</p> <p>Results</p> <p>NeemAzal<sup>® </sup>completely blocked <it>P. berghei </it>development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in <it>Plasmodium </it>gametogenesis and ookinete formation.</p> <p>Conclusions</p> <p>This work demonstrated <it>in vivo </it>transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies.</p

    Transforming growth factor-β in breast cancer: too much, too late

    Get PDF
    The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition

    Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host

    A Functional Phylogenomic View of the Seed Plants

    Get PDF
    A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification

    Connexin channels and phospholipids: association and modulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.</p> <p>Results</p> <p>Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.</p> <p>Conclusion</p> <p>This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.</p
    corecore