2,700 research outputs found

    Risk and prognosis of SARS-CoV-2 infection and vaccination against SARS-CoV-2 in rheumatic and musculoskeletal diseases: a systematic literature review to inform EULAR recommendations

    Get PDF
    Objectives: Perform a systematic literature review (SLR) on risk and prognosis of SARS-CoV-2 infection and vaccination against SARS-CoV-2 in patients with rheumatic and musculoskeletal diseases (RMDs). Methods: Literature was searched up to 31 May 2021, including (randomised) controlled trials and observational studies with patients with RMD. Pending quality assessment, data extraction was performed and risk of bias (RoB) was assessed. Quality assessment required provision of (1) an appropriate COVID-19 case definition, and (2a) a base incidence (for incidence data) or (2b) a comparator, >10 cases with the outcome and risk estimates minimally adjusted for age, sex and comorbidities (for risk factor data). Results: Of 5165 records, 208 were included, of which 90 passed quality assessment and data were extracted for incidence (n=42), risk factor (n=42) or vaccination (n=14). Most studies had unclear/high RoB. Generally, patients with RMDs do not face more risk of contracting SARS-CoV-2 (n=26 studies) or worse prognosis of COVID-19 (n=14) than individuals without RMDs. No consistent differences in risk of developing (severe) COVID-19 were found between different RMDs (n=19). Disease activity is associated with worse COVID-19 prognosis (n=2), possibly explaining the increased risk seen for glucocorticoid use (n=13). Rituximab is associated with worse COVID-19 prognosis (n=7) and possibly Janus kinase inhibitors (n=3). Vaccination is generally immunogenic, though antibody responses are lower than in controls. Vaccine immunogenicity is negatively associated with older age, rituximab and mycophenolate. Conclusion: This SLR informed the July 2021 update of the European Alliance of Associations for Rheumatology recommendations for the management of RMDs in the context of SARS-CoV-2

    Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross

    Get PDF
    An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer

    Rationale, challenges, and participants in a Phase II trial of a botanical product for chronic hepatitis C

    Get PDF
    Background Chronic hepatitis C is associated with significant morbidity and mortality as a consequence of progression to cirrhosis, hepatocellular carcinoma, and liver failure. Current treatment for chronic hepatitis C with pegylated interferon (IFN) and ribavirin is associated with suboptimal responses and numerous adverse effects. A number of botanical products have been used to treat hepatic disorders. Silymarin, extracted from the milk thistle plant, Silybum marianum (L) Gaertn. (Asteraceae), has been most widely used for various liver disorders, including chronic hepatitis C, B, and alcoholic liver disease. However, the safety and efficacy of silymarin have not been studied systematically in chronic hepatitis C

    Evidence for dark matter in the inner Milky Way

    Full text link
    The ubiquitous presence of dark matter in the universe is today a central tenet in modern cosmology and astrophysics. Ranging from the smallest galaxies to the observable universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood. Here we present an up-to-date compilation of Milky Way rotation curve measurements, and compare it with state-of-the-art baryonic mass distribution models. We show that current data strongly disfavour baryons as the sole contribution to the galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy while making no assumptions on its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will shed new light on the structure and evolution of the Galaxy.Comment: First submitted version of letter published in Nature Physics on Febuary 9, 2015: http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3237.htm

    Antagonistic genetic correlations for milking traits within the genome of dairy cattle

    Get PDF
    Genome-wide association studies can be applied to identify useful SNPs associated with complex traits. Furthermore, regional genomic mapping can be used to estimate regional variance and clarify the genomic relationships within and outside regions but has not previously been applied to milk traits in cattle. We applied both single SNP analysis and regional genomic mapping to investigate SNPs or regions associated with milk yield traits in dairy cattle. The de-regressed breeding values of three traits, total yield (kg) of milk (MLK), fat (FAT), and protein (PRT) in 305 days, from 2,590 Holstein sires in Japan were analyzed. All sires were genotyped with 40,646 single-nucleotide polymorphism (SNP) markers. A genome-wide significant region (P < 0.01) common to all three traits was identified by regional genomic mapping on chromosome (BTA) 14. In contrast, single SNP analysis identified significant SNPs only for MLK and FAT (P < 0.01), but not PRT in the same region. Regional genomic mapping revealed an additional significant region (P < 0.01) for FAT on BTA5 that was not identified by single SNP analysis. The additive whole-genomic effects estimated in the regional genomic mapping analysis for the three traits were positively correlated with one another (0.830-0.924). However, the regional genomic effects obtained by using a window size of 20 SNPs for FAT on BTA14 were negatively correlated (P < 0.01) with the regional genomic effect for MLK (-0.940) and PRT (-0.878). The BTA14 regional effect for FAT also showed significant negative correlations (P < 0.01) with the whole genomic effects for MLK (-0.153), FAT (-0.172), and PRT (-0.181). These negative genomic correlations between loci are consistent with the negative linkage disequilibrium expected for traits under directional selection. Such antagonistic correlations may hamper the fixation of the FAT increasing alleles on BTA14. In summary, regional genomic mapping found more regions associated with milk production traits than did single SNP analysis. In addition, the existence of non-zero covariances between regional and whole genomic effects may influence the detection of regional effects, and antagonistic correlations could hamper the fixation of major genes under intensive selection

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments

    Get PDF
    Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.This work was supported by (i) the European Regional Development Fund (ERDF) through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia (FCT/MCTES) in the framework of grants POCI-01-0145-FEDER-031173, POCI-01-0145-FEDER-007274, POCI-01-0145-FEDER-031323 (“Institute for Research and Innovation in Health Sciences”), UID/Multi/04046/2013 (BioISI) and PTDC/NEUNMC/2138/2014 (to CMG). SV was funded by the Spanish Ministry of Economy and Competitiveness (BIO2016-78310-R) and by ICREA (ICREA-Academia 2015). ZG and ZB were funded by Slovak research agentures VEGA 02/0145/17, 02/0030/18 and APVV-18-0284. RS was funded by VEGA 02/0163/19. DEO was funded by the Lundbeck Foundation (grant no. R276-2018-671) and the Independent Research Foundation Denmark | Natural Sciences (grant no. 8021-00208B). AP research was supported by UK Dementia Research Institute (RE1 3556) and by ARUK (ARUK-PG2019B-020)

    Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan

    Get PDF
    Apolipoprotein D (apo D) is a lipocalin present in the nervous system that may be related to processes of reinnervation, regeneration and neuronal cell protection. In the other way, apo D expression has been correlated, in some brain regions, with normal aging and neurodegenerative diseases. To elucidate the regional and cellular expression of apo D in normal human brain during aging, we performed a detailed and extensive study in samples of post-mortem human cerebral cortices. To achieve this study, slot blot techniques, for protein and mRNA, as well as immunohistochemistry and hybridohistochemistry methods were used. A positive correlation for apo D expression with aging was found; furthermore, mRNA levels, as well as the protein ones, were higher in the white than in the grey matter. Immunohistochemistry and non-isotopic HIS showed that apo D is synthesized in both neurons and glial cells. Apo D expression is notorious in oligodendrocytes but with aging the number of neurons that synthesize apo D is increased. Our results indicate that apo D could play a fundamental role in central nervous system aging and in the reduction of products derivated from lipid peroxidation. The increment in the expression of apo D with aging can be included in a global mechanism of cellular protection to prevent the deleterious effects caused by aging
    corecore