836 research outputs found
Role of oxidative stress in the pathology and management of human tuberculosis
Copyright © 2018 Madhur D. Shastri et al. Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is the leading cause of mortality worldwide due to a single infectious agent. The pathogen spreads primarily via aerosols and especially infects the alveolar macrophages in the lungs. The lung has evolved various biological mechanisms, including oxidative stress (OS) responses, to counteract TB infection. M. tuberculosis infection triggers the generation of reactive oxygen species by host phagocytic cells (primarily macrophages). The development of resistance to commonly prescribed antibiotics poses a challenge to treat TB; this commonly manifests as multidrug resistant tuberculosis (MDR-TB). OS and antioxidant defense mechanisms play key roles during TB infection and treatment. For instance, several established first-/second-line antitubercle antibiotics are administered in an inactive form and subsequently transformed into their active form by components of the OS responses of both host (nitric oxide, S-oxidation) and pathogen (catalase/peroxidase enzyme, EthA). Additionally, M. tuberculosis has developed mechanisms to survive high OS burden in the host, including the increased bacterial NADH/NAD+ ratio and enhanced intracellular survival (Eis) protein, peroxiredoxin, superoxide dismutases, and catalases. Here, we review the interplay between lung OS and its effects on both activation of antitubercle antibiotics and the strategies employed by M. tuberculosis that are essential for survival of both drug-susceptible and drug-resistant bacterial subtypes. We then outline potential new therapies that are based on combining standard antitubercular antibiotics with adjuvant agents that could limit the ability of M. tuberculosis to counter the host's OS response
Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators.
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted
The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders.
Inflammation is the result of a complex network of cellular and molecular interactions and mechanisms that facilitate immune protection against intrinsic and extrinsic stimuli, particularly pathogens, to maintain homeostasis and promote tissue healing. However, dysregulation in the immune system elicits excess/abnormal inflammation resulting in unintended tissue damage and causes major inflammatory diseases including asthma, chronic obstructive pulmonary disease, atherosclerosis, inflammatory bowel diseases, sarcoidosis and rheumatoid arthritis. It is now widely accepted that both endoplasmic reticulum (ER) stress and inflammasomes play critical roles in activating inflammatory signalling cascades. Notably, evidence is mounting for the involvement of ER stress in exacerbating inflammasome-induced inflammatory cascades, which may provide a new axis for therapeutic targeting in a range of inflammatory disorders. Here, we comprehensively review the roles, mechanisms and interactions of both ER stress and inflammasomes, as well as their interconnected relationships in inflammatory signalling cascades. We also discuss novel therapeutic strategies that are being developed to treat ER stress- and inflammasome-related inflammatory disorders
Nonequilibrium Dynamics in Noncommutative Spacetime
We study the effects of spacetime noncommutativity on the nonequilibrium
dynamics of particles in a thermal bath. We show that the noncommutative
thermal bath does not suffer from any further IR/UV mixing problem in the sense
that all the finite-temperature non-planar quantities are free from infrared
singularities. We also point out that the combined effect of finite temperature
and noncommutative geometry has a distinct effect on the nonequilibrium
dynamics of particles propagating in a thermal bath: depending on the momentum
of the mode of concern, noncommutative geometry may switch on or switch off
their decay and thermalization. This momentum dependent alternation of the
decay and thermalization rates could have significant impacts on the
nonequilibrium phenomena in the early universe at which spacetime
noncommutativity may be present. Our results suggest a re-examination of some
of the important processes in the early universe such as reheating after
inflation, baryogenesis and the freeze-out of superheavy dark matter
candidates.Comment: 24 pages, 2 figure
Envelope Determinants of Equine Lentiviral Vaccine Protection
Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al
Capecitabine and mitomycin C as third-line therapy for patients with metastatic colorectal cancer resistant to fluorouracil and irinotecan
Protracted venous infusion 5-fluorouracil (5FU) combined with mitomycin C (MMC) has demonstrated significant activity against metastatic colorectal cancer. Owing to potential synergy based upon upregulation of thymidine phosphorylase by MMC, the combination of capecitabine and MMC may improve outcomes in irinotecan-refractory disease. Eligible patients with progressive disease during or within 6 months of second-line chemotherapy were treated with capecitabine (1250 mg m−2 twice daily) days 1–14 every 3 weeks and MMC (7 mg m−2 IV bolus) once every 6 weeks. A total of 36 patients were recruited, with a median age of 64 years (range 40–77), and 23 patients (78%) were performance status 0–1. The objective response rate was 15.2%. In all, 48.5% of patients had stable disease. Median failure-free survival was 5.4 months (95% CI 4.6–6.2). Median overall survival was 9.3 months (95% CI: 6.9–11.7). Grade 3 toxicities were palmar-plantar erythema 16.7%, vomiting 8.3%, diarrhoea 2.8%, anaemia 8.3%, and neutropenia 2.8%. No patients developed haemolytic uraemic syndrome. Symptomatic improvement occurred for pain, bowel symptoms, and dyspnoea. Capecitabine in combination with MMC is an effective regimen for metastatic colorectal cancer resistant to 5FU and irinotecan with an acceptable toxicity profile and a convenient administration schedule
fMRI evidence of ‘mirror’ responses to geometric shapes
Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control
The clinical features of the piriformis syndrome: a systematic review
Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis
Characterising B cell numbers and memory B cells in HIV infected and uninfected Malawian adults
BACKGROUND: Untreated human immunodeficiency virus (HIV) disease disrupts B cell populations causing reduced memory and reduced naïve resting B cells leading to increases in specific co-infections and impaired responses to vaccines. To what extent antiretroviral treatment reverses these changes in an African population is uncertain. METHODS: A cross-sectional study was performed. We recruited HIV-uninfected and HIV-infected Malawian adults both on and off antiretroviral therapy attending the Queen Elizabeth Central hospital in Malawi. Using flow cytometry, we enumerated B cells and characterized memory B cells and compared these measurements by the different recruitment groups. RESULTS: Overall 64 participants were recruited - 20 HIV uninfected (HIV-), 30 HIV infected ART naïve (HIV+N) and 14 HIV-infected ART treated (HIV+T). ART treatment had been taken for a median of 33 months (Range 12-60 months). Compared to HIV- the HIV+N adults had low absolute number of naïve resting B cells (111 vs. 180 cells/μl p = 0.008); reduced memory B cells (27 vs. 51 cells/μl p = 0.0008). The HIV+T adults had B-cell numbers similar to HIV- except for memory B cells that remained significantly lower (30 vs. 51 cells/μl p = 0.02). In the HIV+N group we did not find an association between CD4 count and B cell numbers. CONCLUSIONS: HIV infected Malawian adults have abnormal B-cell numbers. Individuals treated with ART show a return to normal in B-cell numbers but a persistent deficit in the memory subset is noted. This has important implications for long term susceptibility to co-infections and should be evaluated further in a larger cohort study
- …