371 research outputs found

    Hot ductility and deformation behavior of C-Mn/Nb-microalloyed steel related to cracking during continuous casting

    Get PDF
    Hot ductility studies have been performed on C-Mn and C-Mn-Nb steels with an approach to simulate the effect of cooling conditions experienced by steel in secondary cooling zone during continuous casting. Thermal oscillations prior to tensile straining deteriorate hot ductility of steel by deepening and widening the hot ductility trough. C-Mn steels are found to exhibit ductility troughs in three distinct zones whereas C-Mn-Nb steel shows drop in ductility only at low temperature in the vicinity of ferrite transformation temperatures. Start of ferrite transformation in steels causes yield ratio to increase while work hardening rates and strength coefficient decrease with decrease in test temperature in presence of thermal oscillation prior to tensile testing. Inhibition of recrystallization due to build-up of AlN particles along with the presence of MnS particles in structure and low work hardening rates causes embrittlement of steel in austenitic range. Alloying elements enhancing work hardening rates in austenitic range can be promoted to improve hot ductility. The presence of low melting phase saturated with impurities along the austenitic grain boundaries causes intergranular fracture at high temperature in C-Mn steels

    Study - Serum adenosine deaminase levels in reactional and non-reactional leprosy

    Get PDF
    BACKGROUND AND AIMS: Altered serum adenosine deaminase (ADA) levels have been recorded in various diseases involving lymphocytes and/or lymphoreticular system including leprosy. The study was planned to evaluate alterations in serum ADA levels, if any, in reactional and non-reactional leprosy. METHODS: Eighty patients of leprosy, comprising 60 patients of non-reactional leprosy and 20 patients of reactional leprosy were studied along with 20 normal healthy controls. Five milliliters of venous blood was collected and ADA levels were estimated by the method of Giusti (1974). RESULTS: There were 54 males and 26 females. The age of the patients ranged from 5 years to 62 years. The duration of leprosy ranged from 15 days to 3 years. The mean serum ADA level in normal controls was 10.31 \ub1 0.58 u/L. The serum ADA levels were raised in leprosy patients, significantly so in multibacillary patients. The serum ADA levels were higher in patients of leprosy with reaction. CONCLUSIONS: The study showed significantly high serum ADA levels in multibacillary leprosy and this was further increased in patients of leprosy with reaction. This may be because of increased lymphoreticular activity during the reactional phases

    Sea-air CO2 fluxes in the Indian Ocean between 1990 and 2009

    Get PDF
    The Indian Ocean (44 S-30 N) plays an important role in the global carbon cycle, yet it remains one of the most poorly sampled ocean regions. Several approaches have been used to estimate net sea-air CO2 fluxes in this region: interpolated observations, ocean biogeochemical models, atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Indian Ocean sea-air CO2 fluxes between 1990 and 2009. Using all of the models and inversions, the median annual mean sea-air CO2 uptake of −0.37 ± 0.06 PgC yr -1 is consistent with the −0.24 ± 0.12 PgC yr -1 calculated from observations. The fluxes from the southern Indian Ocean (18-44 S; -0.43 ± 0.07 PgC yr-1 are similar in magnitude to the annual uptake for the entire Indian Ocean. All models capture the observed pattern of fluxes in the Indian Ocean with the following exceptions: underestimation of upwelling fluxes in the northwestern region (off Oman and Somalia), overestimation in the northeastern region (Bay of Bengal) and underestimation of the CO2 sink in the subtropical convergence zone. These differences were mainly driven by lack of atmospheric CO2 data in atmospheric inversions, and poor simulation of monsoonal currents and freshwater discharge in ocean biogeochemical models. Overall, the models and inversions do capture the phase of the observed seasonality for the entire Indian Ocean but overestimate the magnitude. The predicted sea-air CO 2 fluxes by ocean biogeochemical models (OBGMs) respond to seasonal variability with strong phase lags with reference to climatological CO 2 flux, whereas the atmospheric inversions predicted an order of magnitude higher seasonal flux than OBGMs. The simulated interannual variability by the OBGMs is weaker than that found by atmospheric inversions. Prediction of such weak interannual variability in CO2 fluxes by atmospheric inversions was mainly caused by a lack of atmospheric data in the Indian Ocean. The OBGM models suggest a small strengthening of the sink over the period 1990-2009 of -0.01 PgC decade-1. This is inconsistent with the observations in the southwestern Indian Ocean that shows the growth rate of oceanic pCO 2 was faster than the observed atmospheric CO2 growth, a finding attributed to the trend of the Southern Annular Mode (SAM) during the 1990s

    Trace gases and CO2 isotope records from cabo de rama, India

    Get PDF
    Concentrations of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrous oxide (N2O) and hydrogen (H2), and the stable carbon (δ 13C-CO2) and oxygen (δ 18O-CO2) isotopic composition of CO2 have been measured in air samples collected from Cabo de Rama (CRI), India, for the period 1993-2002. The observations show clear signatures of Northern and Southern Hemispheric (NH and SH) air masses, mixed with their regional fluxes and chemical loss mechanisms, resulting in complex seasonal variation of these gases. The CRI measurements are compared with remote marine sites at Seychelles and Mauna Loa. Simulations of two major anthropogenic greenhouse gases (CO2 and CH4) concentrations using a chemistry-transport model for the CRI site suggest that globally optimized fluxes can produce results comparable to the observations. We discuss that CRI observations have provided critical guidance in optimizing the fluxes to constrain the regional source/sinks balance

    Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials

    Get PDF
    In recent decades, interest in the Cordyceps genus has amplified due to its immunostimulatory potential. Cordyceps species, its extracts, and bioactive constituents have been related with cytokine production such as interleukin (IL)-1ß, IL-2, IL-6, IL-8, IL-10, IL-12, and tumor necrosis factor (TNF)-a, phagocytosis stimulation of immune cells, nitric oxide production by increasing inducible nitric oxide synthase activity, and stimulation of inflammatory response via mitogen-activated protein kinase pathway. Other pharmacological activities like antioxidant, anti-cancer, antihyperlipidemic, anti-diabetic, anti-fatigue, anti-aging, hypocholesterolemic, hypotensive, vasorelaxation, anti-depressant, aphrodisiac, and kidney protection, has been reported in pre-clinical studies. These biological activities are correlated with the bioactive compounds present in Cordyceps including nucleosides, sterols, flavonoids, cyclic peptides, phenolic, bioxanthracenes, polyketides, and alkaloids, being the cyclic peptides compounds the most studied. An organized review of the existing literature was executed by surveying several databanks like PubMed, Scopus, etc. using keywords like Cordyceps, cordycepin, immune system, immunostimulation, immunomodulatory, pharmacology, anti-cancer, anti-viral, clinical trials, ethnomedicine, pharmacology, phytochemical analysis, and different species names. This review collects and analyzes state-of-the-art about the properties of Cordyceps species along with ethnopharmacological properties, application in food, chemical compounds, extraction of bioactive compounds, and various pharmacological properties with a special focus on the stimulatory properties of immunity.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1004667), Republic of Korea

    Global Burden of Sickle Cell Anaemia in Children under Five, 2010-2050: Modelling Based on Demographics, Excess Mortality, and Interventions

    Get PDF
    The global burden of sickle cell anaemia (SCA) is set to rise as a consequence of improved survival in high-prevalence low- and middle-income countries and population migration to higher-income countries. The host of quantitative evidence documenting these changes has not been assembled at the global level. The purpose of this study is to estimate trends in the future number of newborns with SCA and the number of lives that could be saved in under-five children with SCA by the implementation of different levels of health interventions.First, we calculated projected numbers of newborns with SCA for each 5-y interval between 2010 and 2050 by combining estimates of national SCA frequencies with projected demographic data. We then accounted for under-five mortality (U5m) projections and tested different levels of excess mortality for children with SCA, reflecting the benefits of implementing specific health interventions for under-five patients in 2015, to assess the number of lives that could be saved with appropriate health care services. The estimated number of newborns with SCA globally will increase from 305,800 (confidence interval [CI]: 238,400-398,800) in 2010 to 404,200 (CI: 242,500-657,600) in 2050. It is likely that Nigeria (2010: 91,000 newborns with SCA [CI: 77,900-106,100]; 2050: 140,800 [CI: 95,500-200,600]) and the Democratic Republic of the Congo (2010: 39,700 [CI: 32,600-48,800]; 2050: 44,700 [CI: 27,100-70,500]) will remain the countries most in need of policies for the prevention and management of SCA. We predict a decrease in the annual number of newborns with SCA in India (2010: 44,400 [CI: 33,700-59,100]; 2050: 33,900 [CI: 15,900-64,700]). The implementation of basic health interventions (e.g., prenatal diagnosis, penicillin prophylaxis, and vaccination) for SCA in 2015, leading to significant reductions in excess mortality among under-five children with SCA, could, by 2050, prolong the lives of 5,302,900 [CI: 3,174,800-6,699,100] newborns with SCA. Similarly, large-scale universal screening could save the lives of up to 9,806,000 (CI: 6,745,800-14,232,700) newborns with SCA globally, 85% (CI: 81%-88%) of whom will be born in sub-Saharan Africa. The study findings are limited by the uncertainty in the estimates and the assumptions around mortality reductions associated with interventions.Our quantitative approach confirms that the global burden of SCA is increasing, and highlights the need to develop specific national policies for appropriate public health planning, particularly in low- and middle-income countries. Further empirical collaborative epidemiological studies are vital to assess current and future health care needs, especially in Nigeria, the Democratic Republic of the Congo, and India

    Quantifying the Multivariate ENSO Index (MEI) coupling to CO2 concentration and to the length of day variations

    Full text link
    The El Ni\~no Southern Oscillation (ENSO) is the Earth's strongest climate fluctuation on inter-annual time-scales and has global impacts although originating in the tropical Pacific. Many point indices have been developed to describe ENSO but the Multivariate ENSO Index (MEI) is considered the most representative since it links six different meteorological parameters measured over the tropical Pacific. Extreme values of MEI are correlated to the extreme values of atmospheric CO2 concentration rate variations and negatively correlated to equivalent scale extreme values of the length of day (LOD) rate variation. We evaluate a first order conversion function between MEI and the other two indexes using their annual rate of variation. The quantification of the strength of the coupling herein evaluated provides a quantitative measure to test the accuracy of theoretical model predictions. Our results further confirm the idea that the major local and global Earth-atmosphere system mechanisms are significantly coupled and synchronized to each other at multiple scales.Comment: Theoretical Applied Climatology (2012

    Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death

    Get PDF
    Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells

    Africa and the global carbon cycle

    Get PDF
    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO(2). Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century
    corecore