61 research outputs found

    Emergence of superconductivity in single-crystalline LaFeAsO under simultaneous Sm and P substitution

    Get PDF
    We report on the high-pressure growth, structural characterization, and investigation of the electronic properties of single-crystalline LaFeAsO co-substituted by Sm and P, in both its normal-and super-conducting states. Here, the appearance of superconductivity is attributed to the inner chemical pressure induced by the smaller-size isovalent substituents. X-ray structural refinements show that the partial substitution of La by Sm and As by P in the parent LaFeAsO compound leads to a contraction in both the conducting Fe-2(As,P)(2) layers and the interlayer spacing. The main parameters of the superconducting state, including the critical temperature, the lower-and upper critical fields, as well as the coherence length, the penetration depth, and their anisotropy, were determined from magnetometry measurements on a single -crystalline La0.87Sm0.13FeAs0.91P0.09O sample. The critical current density (jc), as resulting from loops of magnetization hysteresis in the self-generated magnetic field, is 2 x 10(6) A/cm(2) at 2 K. Overall, our findings illustrate a rare and interesting case of how superconductivity can be induced by co-substitution in the 1111 family. Such approach delineates new possibilities in the creation of superconductors by design, thus sti-mulating the exploration of related systems under multi-chemical pressure conditions.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/)

    Tunable Emergent Heterostructures in a Prototypical Correlated Metal

    Full text link
    At the interface between two distinct materials desirable properties, such as superconductivity, can be greatly enhanced, or entirely new functionalities may emerge. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions, the control of which, would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom. Here we report high-resolution neutron spectroscopy on the prototypical strongly-correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy -- a well-established mechanism for generating spontaneous superstructures. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting and electronic nematic textures in CeRhIn5, suggesting that in-situ tunable heterostructures can be realized in correlated electron materials

    To use or not to use cool superconductors?

    Full text link
    The high critical temperature and magnetic field in cuprates and Fe-based superconductors are not enough to assure applications at higher temperatures. Making these superconductors useful involves complex and expensive technologies to address many conflicting physics and materials requirements

    Superballistic flow of viscous electron fluid through graphene constrictions

    Get PDF
    Electron–electron (e–e) collisions can impact transport in a variety of surprising and sometimes counterintuitive ways1,2,3,4,5,6. Despite strong interest, experiments on the subject proved challenging because of the simultaneous presence of different scattering mechanisms that suppress or obscure consequences of e–e scattering7,8,9,10,11. Only recently, sufficiently clean electron systems with transport dominated by e–e collisions have become available, showing behaviour characteristic of highly viscous fluids12,13,14. Here we study electron transport through graphene constrictions and show that their conductance below 150 K increases with increasing temperature, in stark contrast to the metallic character of doped graphene15. Notably, the measured conductance exceeds the maximum conductance possible for free electrons16,17. This anomalous behaviour is attributed to collective movement of interacting electrons, which ‘shields’ individual carriers from momentum loss at sample boundaries18,19. The measurements allow us to identify the conductance contribution arising due to electron viscosity and determine its temperature dependence. Besides fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at elevated temperatures, a potentially useful behaviour for designing graphene-based devices

    Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    No full text
    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale

    Thermodynamic anomaly above the superconducting critical temperature in the quasi-one-dimensional superconductor Ta4Pd3Te16

    No full text
    We study the intrinsic electronic anisotropy and fermiology of the quasi-one-dimensional superconductor Ta4Pd3Te16. Below T ∗ = 20 K, we detect a thermodynamic phase transition that predominantly affects the conductivity perpendicular to the quasi-one-dimensional chains. The transition relates to the presence of charge order that precedes superconductivity. Remarkably, the Fermi surface pockets detected by de Haas–van Alphen oscillations are unaffected by this transition, suggesting that the ordered state does not break any translational symmetries but rather alters the scattering of the quasiparticles themselves
    • …
    corecore