138 research outputs found

    Dissipative corrections to particle spectra and anisotropic flow from a saddle-point approximation to kinetic freeze out

    Get PDF
    Lang C, Borghini N. Dissipative corrections to particle spectra and anisotropic flow from a saddle-point approximation to kinetic freeze out. The European Physical Journal C. 2014;74(7): 2955.A significant fraction of the changes in momentum distributions induced bydissipative phenomena in the description of the fluid fireball created inultrarelativistic heavy ion collisions are actually taking place when the fluidturns into individual particles. We study these corrections in the limit of alow freeze-out temperature of the flowing medium, and show that they mostlyaffect particles with a higher velocity than the fluid. For these, we deriverelations between different flow harmonics, from which the functional form ofthe dissipative corrections could ultimately be reconstructed from experimentaldata

    Chiral Nonet Mixing in pi pi Scattering

    Get PDF
    Pion pion scattering is studied in a generalized linear sigma model which contains two scalar nonets (one of quark-antiquark type and the other of diquark-antidiquark type) and two corresponding pseudoscalar nonets. An interesting feature concerns the mixing of the four isosinglet scalar mesons which yield poles in the scattering amplitude. Some realism is introduced by enforcing exact unitarity via the K-matrix method. It is shown that a reasonable agreement with experimental data is obtained up to about 1 GeV. The poles in the unitarized scattering amplitude are studied in some detail. The lowest pole clearly represents the sigma meson (or f0(600)) with a mass and decay width around 500 MeV. The second pole invites comparison with the f0(980) which has a mass around 1 GeV and decay width around 100 MeV. The third and fourth poles, resemble some of the isosinglet state in the complicated 1-2 GeV region. Some comparison is made to the situation in the usual SU(3) linear sigma model with a single scalar nonet

    On the stability of the exact solutions of the dual-phase lagging model of heat conduction

    Get PDF
    The dual-phase lagging (DPL) model has been considered as one of the most promising theoretical approaches to generalize the classical Fourier law for heat conduction involving short time and space scales. Its applicability, potential, equivalences, and possible drawbacks have been discussed in the current literature. In this study, the implications of solving the exact DPL model of heat conduction in a three-dimensional bounded domain solution are explored. Based on the principle of causality, it is shown that the temperature gradient must be always the cause and the heat flux must be the effect in the process of heat transfer under the dual-phase model. This fact establishes explicitly that the single- and DPL models with different physical origins are mathematically equivalent. In addition, taking into account the properties of the Lambert W function and by requiring that the temperature remains stable, in such a way that it does not go to infinity when the time increases, it is shown that the DPL model in its exact form cannot provide a general description of the heat conduction phenomena

    Liquid-gas phase transition in nuclear multifragmentation

    Get PDF
    The equation of state of nuclear matter suggests that at suitable beam energies the disassembling hot system formed in heavy ion collisions will pass through a liquid-gas coexistence region. Searching for the signatures of the phase transition has been a very important focal point of experimental endeavours in heavy ion collisions, in the last fifteen years. Simultaneously theoretical models have been developed to provide information about the equation of state and reaction mechanisms consistent with the experimental observables. This article is a review of this endeavour.Comment: 63 pages, 27 figures, submitted to Adv. Nucl. Phys. Some typos corrected, minor text change

    Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice

    Get PDF
    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

    Get PDF
    The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation
    corecore