2,663 research outputs found

    Influence of topography on tide propagation and amplification in semi-enclosed basins

    Get PDF
    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having either a uniform depth or two depths separated by a transverse topographic step. The problem is forced by an incoming Kelvin wave at the open end, while allowing waves to radiate outward. The solution in each compartment is written as the superposition of (semi)-analytical wave solutions in an infinite channel, individually satisfying the depth-averaged linear shallow water equations on the f plane, including bottom friction. A collocation technique is employed to satisfy continuity of elevation and flux across the longitudinal topographic steps between the compartments. The model results show that the tidal wave in shallow parts displays slower propagation, enhanced dissipation and amplified amplitudes. This reveals a resonance mechanism, occurring when\ud the length of the shallow end is roughly an odd multiple of the quarter Kelvin wavelength. Alternatively, for sufficiently wide basins, also Poincaré waves may become resonant. A transverse step implies different wavelengths of the incoming and reflected Kelvin wave, leading to increased amplitudes in shallow regions and a shift of amphidromic points in the direction of the deeper part. Including the shallow parts near the basin’s closed end (thus capturing the Kelvin resonance mechanism) is essential to reproduce semi-diurnal and diurnal\ud tide observations in the Gulf of California, the Adriatic Sea and the Persian Gulf

    Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography.

    Get PDF
    Over the past 10 years there has been intense research in the development of volumetric visualization of intracardiac flow by cardiac magnetic resonance (CMR).This volumetric time resolved technique called CMR 4D flow imaging has several advantages over standard CMR. It offers anatomical, functional and flow information in a single free-breathing, ten-minute acquisition. However, the data obtained is large and its processing requires dedicated software. We evaluated a cloud-based application package that combines volumetric data correction and visualization of CMR 4D flow data, and assessed its accuracy for the detection and grading of aortic valve regurgitation using transthoracic echocardiography as reference. Between June 2014 and January 2015, patients planned for clinical CMR were consecutively approached to undergo the supplementary CMR 4D flow acquisition. Fifty four patients(median age 39 years, 32 males) were included. Detection and grading of the aortic valve regurgitation using CMR4D flow imaging were evaluated against transthoracic echocardiography. The agreement between 4D flow CMR and transthoracic echocardiography for grading of aortic valve regurgitation was good (j = 0.73). To identify relevant,more than mild aortic valve regurgitation, CMR 4D flow imaging had a sensitivity of 100 % and specificity of 98 %. Aortic regurgitation can be well visualized, in a similar manner as transthoracic echocardiography, when using CMR 4D flow imaging

    A Factorization Law for Entanglement Decay

    Full text link
    We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.Comment: 4 pages, 5 figure

    Alteration of viral lipid composition by expression of the phospholipid floppase ABCB4 reduces HIV vector infectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of cholesterol in the Human Immunodeficiency Virus (HIV) lipid envelop is important for viral function as cholesterol depleted viral particles show reduced infectivity. However, it is less well established whether other viral membrane lipids are also important for HIV infection.</p> <p>The ABCB4 protein is a phosphatidyl choline (PC) floppase that mediates transport of PC from the inner to the outer membrane leaflet. This property enabled us to modulate the lipid composition of HIV vectors and study the effects on membrane composition and infection efficiency.</p> <p>Results</p> <p>Virus generated in the presence of ABCB4 was enriched in PC and cholesterol but contained less sphingomyelin (SM). Viral titers were reduced 5.9 fold. These effects were not observed with an inactive ABCB4 mutant. The presence of the ABC transport inhibitor verapamil abolished the effect of ABCB4 expression on viral titers.</p> <p>The ABCB4 mediated reduction in infectivity was caused by changes in the viral particles and not by components co purified with the virus because virus made in the presence of ABCB4 did not inhibit virus made without ABCB4 in a competition assay.</p> <p>Incorporation of the envelope protein was not affected by the expression of ABCB4. The inhibitory effect of ABCB4 was independent of the viral envelope as the effect was observed with two different envelope proteins.</p> <p>Conclusion</p> <p>Our data indicate that increasing the PC content of HIV particles reduces infectivity.</p

    Elbow Joint Loads during Simulated Activities of Daily Living:Implications for Formulating Recommendations after Total Elbow Arthroplasty.

    Get PDF
    Background: Overloading of the elbow joint prosthesis following total elbow arthroplasty can lead to implant failure. Joint moments during daily activities are not well-contextualized for a prosthesis' failure limits and the effect of the current postoperative instruction on elbow joint loading is unclear. This study investigates the difference in elbow joint moments between simulated daily tasks and between flexion-extension, pronation-supination, varus-valgus movement directions. Additionally, the effect of the current postoperative instruction on elbow joint load is examined.Methods: Nine healthy participants (age 45.8 ± 17 years, 3 males) performed eight tasks; driving a car, opening a door, rising from chair, lifting, sliding, combing hair, drinking, emptying cup, without and with the instruction "not lifting more than 1 kg". Upper limb kinematics and hand contact forces were measured. Elbow joint angles and net moments were analyzed using inverse dynamic analysis, where the net moments are estimated from movement data and external forces.Results: Peak elbow joint moments differed significantly between tasks (p &lt; 0.01) and movement directions (p &lt; 0.01). The most and least demanding tasks were, rising from a chair (13.4 Nm extension, 5.0 Nm supination, 15.2 Nm valgus) and sliding (4.3 Nm flexion, 1.7 Nm supination, 2.6 Nm varus). Net moments were significantly reduced after instruction only in the chair task (p &lt; 0.01).Conclusion: This study analyzed elbow joint moments in different directions during daily tasks. The outcomes question whether postoperative instruction can lead to decreasing elbow loads. Future research might focus on reducing elbow loads in the flexion-extension and varus-valgus directions.<br/

    Mental health: A cause or consequence of injury? A population-based matched cohort study

    Get PDF
    BACKGROUND: While a number of studies report high prevalence of mental health problems among injured people, the temporal relationship between injury and mental health service use has not been established. This study aimed to quantify this relationship using 10 years of follow-up on a population-based cohort of hospitalised injured adults. METHODS: The Manitoba Injury Outcome Study is a retrospective population-based matched cohort study that utilised linked administrative data from Manitoba, Canada, to identify an inception cohort (1988–1991) of hospitalised injured cases (ICD-9-CM 800–995) aged 18–64 years (n = 21,032), which was matched to a non-injured population-based comparison group (n = 21,032). Pre-injury comorbidity and post-injury mental health data were obtained from hospital and physician claims records. Negative Binomial regression was used to estimate adjusted rate ratios (RRs) to measure associations between injury and mental health service use. RESULTS: Statistically significant differences in the rates of mental health service use were observed between the injured and non-injured, for the pre-injury year and every year of the follow-up period. The injured cohort had 6.56 times the rate of post-injury mental health hospitalisations (95% CI 5.87, 7.34) and 2.65 times the rate of post-injury mental health physician claims (95% CI 2.53, 2.77). Adjusting for comorbidities and pre-existing mental health service use reduced the hospitalisations RR to 3.24 (95% CI 2.92, 3.60) and the physician claims RR to 1.53 (95% CI 1.47, 1.59). CONCLUSION: These findings indicate the presence of pre-existing mental health conditions is a potential confounder when investigating injury as a risk factor for subsequent mental health problems. Collaboration with mental health professionals is important for injury prevention and care, with ongoing mental health support being a clearly indicated service need by injured people and their families. Public health policy relating to injury prevention and control needs to consider mental health strategies at the primary, secondary and tertiary level

    Pontine capillary telangiectasia as visualized on MR imaging causing a clinical picture resembling basilar-type migraine: a case report

    Get PDF
    A case of presumed pontine capillary telangiectasia in an 18-year-old woman with a clinical diagnosis of basilar-type migraine is reported. Since both are very rare diagnoses, this case provides some evidence to suggest that pontine capillary telangiectasia might cause a clinical picture resembling basilar-type migraine

    Accounting Problems Under the Excess Profits Tax

    Get PDF
    DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV- 1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8(+) T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.Funding Agencies|Research Council of Norway; Odd Fellow</p

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
    corecore