228 research outputs found
Serum methylarginines and spirometry-measured lung function in older adults
Rationale: Methylarginines are endogenous nitric oxide synthase inhibitors that have been implicated in animal models of lung disease but have not previously been examined for their association with spirometric measures of lung function in humans.
Objectives: This study measured serum concentrations of asymmetric and symmetric dimethylarginine in a representative sample of older community-dwelling adults and determined their association with spirometric lung function measures.
Methods: Data on clinical, lifestyle, and demographic characteristics, methylated arginines, and L-arginine (measured using LC-MS/MS) were collected from a population-based sample of older Australian adults from the Hunter Community Study.
The five key lung function measures included as outcomes were Forced Expiratory Volume in 1 second, Forced Vital Capacity, Forced Expiratory Volume in 1 second to Forced Vital Capacity ratio, Percent Predicted Forced Expiratory Volume in 1 second, and Percent Predicted Forced Vital Capacity.
Measurements and Main Results: In adjusted analyses there were statistically significant independent associations between a) higher asymmetric dimethylarginine, lower Forced Expiratory Volume in 1 second and lower Forced Vital Capacity; and b) lower L-arginine/asymmetric dimethylarginine ratio, lower Forced Expiratory Volume in 1 second, lower Percent Predicted Forced Expiratory Volume in 1 second and lower Percent Predicted Forced Vital Capacity. By contrast, no significant associations were observed between symmetric dimethylarginine and lung function.
Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders, higher serum asymmetric dimethylarginine was independently associated with a reduction in key measures of lung function. Further research is needed to determine if methylarginines predict the decline in lung function
Review: optical fiber sensors for civil engineering applications
Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee βOptical fiber sensors for civil engineering applicationsβ, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry
Microbial Co-occurrence Relationships in the Human Microbiome
The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.National Institutes of Health (U.S.) (grant CA139193)Fonds Wetenschappelijk Onderzoek β VlaanderenJuvenile Diabetes Research Foundation InternationalNational Institutes of Health (U.S.) (grant NIH U54HG004969)Crohn's and Colitis Foundation of AmericaNational Science Foundation (U.S.) (NSF DBI-1053486)United States. Army Research Office (ARO W911NF-11-1-0473)National Institutes of Health (U.S.) (grant NIH 1R01HG005969
Heterogeneity of fractional anisotropy and mean diffusivity measurements by in vivo diffusion tensor imaging in normal human hearts
Background: Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described.
Methods: Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls.
Results: FA was higher in the mesocardium (0.46 Β±0.04) than the endocardium (0.40 Β±0.04, pβ€0.001) and epicardium (0.39 Β±0.04, pβ€0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 Β±0.03 vs 0.40 Β±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 Β±0.07 vs endocardium 0.91 Β±0.08Γ10-3 mm2/s, p = 0.04). With the lateral wall (0.87 Β± 0.08Γ10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 Β±0.08Γ10-3 mm2/s, p = 0.016) and septum (0.92 Β±0.07Γ10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 Β±2.5 vs endocardium 13.1 Β±2.2, p<0.001; vs epicardium 12.0 Β± 2.4, p<0.001) and regionally in the septum (16.0 Β±3.4 vs lateral wall 11.5 Β± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium.
Conclusions: In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified
Increasing genome instability in adrenocortical carcinoma progression with involvement of chromosomes 3, 9 and X at the adenoma stage
The investigation of chromosomal aberrations in adrenocortical tumours has been limited by the difficulties of applying classical cytogenetics to tumours with low levels of proliferation. We have therefore applied the technique of interphase cytogenetics to paraffin-embedded archival specimens of 14 adrenocortical adenomas and 13 carcinomas. Hybridizations were performed using centromere-specific probes to chromosomes 3, 4, 9, 17, 18 and X, which have been shown to be altered in other types of tumours. Chromosomal imbalance was defined on the basis of changes in both chromosome index (CI) and signal distribution (SD). Where only one of these was altered, this was classified as a tendency to gain or loss. On the basis of the analysis of optimal hybridizations, carcinomas showed gains in all chromosomes studied, five of nine showing gains in multiple chromosomes. Gains were most common in chromosomes 3, 9 and, in particular X, eight of 11 showing gain, and one a tendency to gain. Chromosomal gain was seen less commonly in adenomas, but again chromosomes 3, 9 and X were involved. Losses were infrequent, only one carcinoma showing loss of chromosome 18, and adenomas showing a tendency to loss of chromosomes 4 (two cases), 17 (one case) and 18 (two cases). Our data suggest that changes in chromosomes 3, 9 and X are early events in adrenocortical tumorigenesis, and that there is increasing chromosomal instability with tumour progression. Β© 1999 Cancer Research Campaig
Mild hypothermia delays the development of stone heart from untreated sustained ventricular fibrillation - a cardiovascular magnetic resonance study
<p>Abstract</p> <p>Background</p> <p>'Stone heart' resulting from ischemic contracture of the myocardium, precludes successful resuscitation from ventricular fibrillation (VF). We hypothesized that mild hypothermia might slow the progression to stone heart.</p> <p>Methods</p> <p>Fourteen swine (27 Β± 1 kg) were randomized to normothermia (group I; n = 6) or hypothermia groups (group II; n = 8). Mild hypothermia (34 Β± 2Β°C) was induced with ice packs prior to VF induction. The LV and right ventricular (RV) cross-sectional areas were followed by cardiovascular magnetic resonance until the development of stone heart. A commercial 1.5T GE Signa NV-CV/i scanner was used. Complete anatomic coverage of the heart was acquired using a steady-state free precession (SSFP) pulse sequence gated at baseline prior to VF onset. Un-gated SSFP images were obtained serially after VF induction. The ventricular endocardium was manually traced and LV and RV volumes were calculated at each time point.</p> <p>Results</p> <p>In group I, the LV was dilated compared to baseline at 5 minutes after VF and this remained for 20 minutes. Stone heart, arbitrarily defined as LV volume <1/3 of baseline at the onset of VF, occurred at 29 Β± 3 minutes. In group II, there was less early dilation of the LV (p < 0.05) and the development of stone heart was delayed to 52 Β± 4 minutes after onset of VF (P < 0.001).</p> <p>Conclusions</p> <p>In this closed-chest swine model of prolonged untreated VF, hypothermia reduced the early LV dilatation and importantly, delayed the onset of stone heart thereby extending a known, morphologic limit of resuscitability.</p
Circulating mediators of inflammation and immune activation in AIDS-related non-Hodgkin lymphoma
Background: Non-Hodgkin lymphoma (NHL) is the most common AIDS-related malignancy in developed countries. An elevated risk of developing NHL persists among HIV-infected individuals in comparison to the general population despite the advent of effective antiretroviral therapy. The mechanisms underlying the development of AIDS-related NHL (A-NHL) are not fully understood, but likely involve persistent B-cell activation and inflammation. Methods: This was a nested case-control study within the ongoing prospective Multicenter AIDS Cohort Study (MACS). Cases included 47 HIV-positive male subjects diagnosed with high-grade B-cell NHL. Controls were matched to each case from among participating HIV-positive males who did not develop any malignancy. Matching criteria included time HIV+ or since AIDS diagnosis, age, race and CD4+ cell count. Sera were tested for 161 serum biomarkers using multiplexed beadbased immunoassays. Results: A subset of 17 biomarkers, including cytokines, chemokines, acute phase proteins, tissue remodeling agents and bone metabolic mediators was identified to be significantly altered in A-NHL cases in comparison to controls. Many of the biomarkers included in this subset were positively correlated with HIV viral load. A pathway analysis of our results revealed an extensive network of interactions between current and previously identified biomarkers. Conclusions: These findings support the current hypothesis that A-NHL develops in the context of persistent immune stimulation and inflammation. Further analysis of the biomarkers identified in this report should enhance our ability to diagnose, monitor and treat this disease. Β© 2014 Nolen et al
Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella
- β¦