21,121 research outputs found

    Tanaka-Tagoshi Parametrization of post-1PN Spin-Free Gravitational Wave Chirps: Equispaced and Cardinal Interpolated Lattices For First Generation Interferometric Antennas

    Full text link
    The spin-free binary-inspiral parameter-space introduced by Tanaka and Tagoshi to construct a uniformly-spaced lattice of templates at (and possibly beyond) 2.5PN2.5PN order is shown to work for all first generation interferometric gravitational wave antennas. This allows to extend the minimum-redundant cardinal interpolation techniques of the correlator bank developed by the Authors to the highest available order PN templates. The total number of 2PN templates to be computed for a minimal match Γ=0.97\Gamma=0.97 is reduced by a factor 4, as in the 1PN case.Comment: 9 pages, 8 figures, 3 tables, accepted for publication in Phys. Rev.

    Thermal and non-thermal emission from reconnecting twisted coronal loops

    Full text link
    Twisted magnetic fields should be ubiquitous in flare-producing active regions where the magnetic fields are strongly non-potential. It has been shown that reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops. This scenario can be an alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. We use a combination of MHD simulations and test-particle methods, which describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us estimate thermal X-ray emission intensities. The electric and magnetic fields obtained are used to calculate electron trajectories using the guiding-centre approximation. These trajectories combined with the MHD plasma density distributions let us deduce synthetic HXR bremsstrahlung intensities. Our simulations emphasise that the geometry of the emission patterns produced by hot plasma in flaring twisted coronal loops can differ from the actual geometry of the underlying magnetic fields. The twist angles revealed by the emission threads (SXR) are consistently lower than the field-line twist present at the onset of the kink-instability. HXR emission due to the interaction of energetic electrons with the stratified background are concentrated at the loop foot-points in these simulations, even though the electrons are accelerated everywhere within the coronal volume of the loop. The maximum of HXR emission consistently precedes that of SXR emission, with the HXR light-curve being approximately proportional to the temporal derivative of the SXR light-curve.Comment: (accepted for publication on A&A

    Frequency and damping evolution during experimental seismic response of civil engineering structures

    Get PDF
    The results of the seismic tests on several reinforced-concrete shear walls and a four-storey frame are analysed in this paper. Each specimen was submitted to the action of a horizontal accelerogram, with successive growing amplitudes, using the pseudodynamic method. An analysis of the results allows knowing the evolution of the eigen frequency and damping ratio during the earthquakes thanks to an identification method working in the time domain. The method is formulated as a spatial model in which the stiffness and damping matrices are directly identified from the experimental displacements, velocities and restoring forces. The obtained matrices are then combined with the theoretical mass in order to obtain the eigen frequencies, damping ratios and modes. Those parameters have a great relevance for the design of this type of structures

    Kinetic conversion of CO to CH4 in the Solar System

    Get PDF
    Some of the most interesting chemistry in the Solar System involves changes in the oxidation state of the simple carbon species. The chemical pathways for the conversion of CH4 to CO and CO2 are for the most part known. The reverse process, the reduction of CO to CH4, is, however, poorly understood. This is surprising in view of the importance of the reduction process in the chemistry of the Solar System. Recently we investigated the chemical kinetics of a hitherto unsuspected reaction. It is argued that the formation of the methoxy radical (CH3O) from H+H2CO may play an essential role in the reduction of CO to CH4. The rate coefficient for this reaction has been estimated using the approximate theory of J. Troe and transition state theory. We will discuss the implications of this reaction for the chemistry of CO on Jupiter, in the solar nebula, for interpreting the laboratory experiments of A. Bar-Nun and A. Shaviv and A. Bar-Nun and S. Chang, and for organic synthesis in the prebiotic terrestrial atmosphere. The possible relation of CO reduction in the solar nebula and polyoxymethylene observed in comet Halley will be discussed

    Carbon coating of the SPS dipole chambers

    Full text link
    The Electron Multipacting (EM) phenomenon is a limiting factor for the achievement of high luminosity in accelerators for positively charged particles and for the performance of RF devices. At CERN, the Super Proton Synchrotron (SPS) must be upgraded in order to feed the Large Hadron Collider (LHC) with 25 ns bunch spaced beams. At such small bunch spacing, EM may limit the performance of the SPS and consequently that of the LHC. To mitigate this phenomenon CERN is developing a carbon thin film coating with low Secondary Electron Yield (SEY) to coat the internal walls of the SPS dipoles beam pipes. This paper presents the progresses in the coating technology, the performance of the carbon coatings and the strategy for a large scale production.Comment: 7 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Italy; CERN Yellow Report CERN-2013-002, pp.141-14

    Critical current of a superconductor measured via injection of spin polarized carriers

    Full text link
    In this paper we report a direct evidence of the suppression of critical current due to pair-breaking in a superconducting micro-bridge when the measurement is carried out by injecting spin polarised carriers instead of normal electrons. A thin layer of La0.7Ca0.3MnO3 was used as the source of spin polarised carriers. The micro-bridge was formed on the DyBa2Cu3O7-d thin film by photo-lithographic techniques. The design of our spin-injection device allowed us to inject spin-polarised carriers from the La0.7Ca0.3MnO3 layer directly to the DyBa2Cu3O7- d micro-bridge (without any insulating buffer layer) making it possible to measure the critical current when polarised electrons alone are injected into the superconductor. Our results confirm the role of polarised carriers in breaking the Cooper pairs in the superconductor.Comment: 8 pages, 4 figure

    Robust Gravitational Wave Burst Detection and Source Localization in a Network of Interferometers Using Cross Wigner Spectra

    Full text link
    We discuss a fast cross-Wigner transform based technique for detecting gravitational wave bursts, and estimating the direction of arrival, using a network of (three) non co-located interferometric detectors. The performances of the detector as a function of signal strength and source location, and the accuracy of the direction of arrival estimation are investigated by numerical simulations.Comment: accepted in Class. Quantum Gravit

    Modular termination verification for non-blocking concurrency

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.We present Total-TaDA, a program logic for verifying the total correctness of concurrent programs: that such programs both terminate and produce the correct result. With Total-TaDA, we can specify constraints on a thread’s concurrent environment that are necessary to guarantee termination. This allows us to verify total correctness for nonblocking algorithms, e.g. a counter and a stack. Our specifications can express lock- and wait-freedom. More generally, they can express that one operation cannot impede the progress of another, a new non-blocking property we call non-impedance. Moreover, our approach is modular. We can verify the operations of a module independently, and build up modules on top of each other

    Probing BH mass and accretion through X-ray variability in the CDFS

    Full text link
    Recent work on nearby AGNs has shown that X-ray variability is correlated with the mass and accretion rate onto the central SMBH. Here we present the application of the variability-luminosity relation to high redshift AGNs in the CDFS, making use of XMM-Newton observations. We use Monte Carlo simulations in order to properly account for bias and uncertainties introduced by the sparse sampling and the very low statistics. Our preliminary results indicate that BH masses span over the range from 10^5 to 10^9 solar mass while accretion rates range from 10^-3 up to values greater than 1, in unit of Eddington accretion rate.Comment: 2 pages, 2 figures,in press in the X-ray 2009 Conference Proceedings (Bologna, 7-11 September 2009
    • …
    corecore